

National Aeronautics and Space Administration

VLBI observations of HBLs and a "special HBL" case... M. Giroletti **INAF Istituto di Radioastronomia** Bologna

VLBI in the GLAST Era April 23-24, 2007 NASA - Goddard Space Flight Center

Part 1 GLAST/VLBI and HBLs

- basics

– a sample of nearby BL Lacs

- results...

Basics #1: EGRET results

The Third EGRET Catalog consists of 271 sources, including 66 high-confidence and 27 possible blazar identifications FSRQs >> LBLs >> HBLs HBLs just 3% of high confidence blazars

Basics #2: the blazar sequence

Putting basics together...

- do the EGRET results make sense in the light of the blazar sequence?
 - EGRET energy range: 20 MeV to about 30 GeV.
 - Synchrotron component fades at lower energy
 - IC component strong only for high luminosity/low energy peaked sources
 - EGRET sensitivity
- Yes, they do! HBLs largely escape detection in that band
 - #1 What do/can we know of HBLs then?
 - #2 Will GLAST greater sensitivity detect many HBLs?
 - #3 What if the blazar sequence is an artifact?

What about HBLs

HBLs strenghts:

- traditionally X-ray selected (X-rays: synchrotron)
- TeV sources!!! (95% of extragalactic detections)

HBLs weaknesses:

radio: detected but "unexciting"
radio properties: best known for LBL/FSRQ
easy to understand why... (RBL, ...)
Mev/Gev gamma rays: undetected
GLAST/VLBI meeting: we're at a loss!
...let me show you we can actually do something!

Selection

- All sources from the HST snapshot survey, at z<0.2</p>
 - distance limited *not complete though*
 - no (additional) selection on radio/X-rays flux density
 - subset of a collection of objects with random properties, e.g.:

I Jy: complete but with high flux limit

- EMSS, Slew: X-ray selected, contain HBLs
- 30 objects with z<0.2 (out of the 110 sample)
 1 outlier, 7 LBLs, 22 HBLs

A comparison to the 1 Jy sample

<Log P_{1.4 GHz}> = 26.8 + / - 0.9

 $< \text{Log P}_{1.4 \text{ GHz}} > = 24.8 + / - 0.6$

Few objects already known in radio (less than 50% had VLBI or VLA)

Observations

Large scale and arcsecond core

- VLA @1.4 GHz: A conf., 10 hrs/19 sources
- VLA @1.4 GHz: C conf., 5 hrs/9 sources
- milliarcsecond structure
 - VLBA @5 GHz: 15 hrs/15 sources
 - EVN @1.6 GHz: 12 hrs/6 sources
- Intermediate scale peculiarities
 - EVN+MERLIN @5 GHz: 12 hrs/2 sources
- Well known sources
 - ADS, NED, VLA, EVN, MERLIN archives

HBLs: low resolution images

HBLs: high resolution images

- All sources detected without phase ref. (yet highly desirable in some cases)
- cores between 3 and 300 mJy
- 7 unresolved
- 15 jets, both short and not so short!

Intermediate resolution images

1215+303, z = 0.130

- EVN+MERLIN image, 5 GHz
 - peak = 294 mJy/beam
 - total = 350 mJy
 - PA = 150°

- VLA image, from FIRST survey (1.4 GHz)

- peak = 377 mJy/beam
- total = 590 mJy

LBL/HBL & bending

ΔP.A. = |P.A._{asec}-P.A._{mas}|
 Large ΔP.A. are less common in our sample than in the 1 Jy

- HBL jets are intrinsically straighter
- bending is less amplified in HBLs: smaller θ and δ
- limits in image sensitivity?

Radio jet parameters

From:

- core dominance
- SSC
- jet/counterjet
- assumptions...
- Results
 - $-10^{\circ} \le \theta \le 25^{\circ}$
 - Γ_{HBL} 2~4
 1 < δ < 10

Parent Population (1)

Comparing to FR I studied by Giovannini et al. (2001), both extended and nuclear radio power overlap

Parent Population (2)

- HST and radio data for FRIs (Chiaberge+ 99):
 - radio and optical core luminosities are correlated
 - same emission mechanism? synchrotron!
- HST and radio data for BL Lacs (Giroletti+ 06)
 - radio and optical core luminosities (and fluxes) correlate
 - observed L are offset w.r.t.
 FRIs
 - debeamed L fall on FRI correlation!

Parent Population (3)

- Host galaxy magnitude and total radio power divide FRI/II (Ledlow&Owen 1996)
 - all HBLs fall into FRI region
 - if *M_R*~BH mass and
 P_r~Mdot:, HBL are sub-Eddington

Summary (focus VLBI)

HBLs are detected with VLBI 100%
with jets 70%
less misaligned than LBLs
less fast than LBLs

- no motions (cfr. Piner+ and next slides...)
- some interesting target...

Part 2 A special HBL and mm-VLBI

object ID
from kpc to sub-pc scale
results...

Markarian 501

- z=0.0337: 1 mas = 0.7 pc, 1 R_S=10⁻³ pc
- S_{NVSS}=1.6 Jy the brightest HBL
- $P_{1.4 \text{ GHz}} = 4.7 \text{x} 10^{24} \text{ W/Hz}$
- activity and extreme variability detected in X and TeV
- EGRET: not in 3EG

Thanks to its proximity and brightness, the source is an ideal laboratory for experiments using advanced VLBI techniques at all frequencies.

High Sensitivity Array observations

- We observed Mrk 501 with the HSA on 26 Nov 2004
- High jet/counterjet ratio:
 - R>2860 near the core
 - R>20 at 120 mas
- fit to the trend of the jet brightness and FWHM:
 - not in agreement with a parallel magnetic field adiabatic model since it predicts a jet velocity decrease at ~80 mas from the core, in contrast with measured R
 - On the contrary a perpendicular magnetic field model predicts a large jet velocity in agreement with the non detection of a cj and a jet velocity decrease far from the core (arcsecond scale, VLA).

VSOP observations

- The best resolution @1.6 GHz is provided by Space VLBI (obs. 4 Apr 1998)
- The image reveals an evident limb-brightened structure in the very inner jet and visible for several parsecs:
 - evidence of a velocity structure starting near to the core (inner fast spine, slower external layer)
 - visible also in ground VLBI @22 GHz
 - No proper motion found comparing 9 different epochs (cfr. Piner&Edwards)

Global mm-VLBI observations

- We observed Mrk 501 with the Global mm-VLBI Array [see T. Krichbaum's talk + http://www.mpifr-bonn.mpg.de/div/vlbi/globalmm/]
- Standard frequency is 86.453 GHz
- Participating telescopes: Effelsberg, Pico Veleta, Plateau de Bure, Onsala, Metsahovi, and 8 VLBA stations
- European telescopes ~9 hours, American ones ~6
- Experiment to the array sensitivity limits, since Mrk 501 is expected to be only a few 100's mJy at 3mm...
- with success!!!

Lower frame: Ampl Jy Top frame: Phas deg Scalar averaged cross-power spectrum Several baselines displayed Timerange: 00/18:48:00 to 00/18:52:30

GMVA results (preliminary)

- The resolution is 0.16 x 0.08 mas, i.e. \sim 560 R_S. At this resolution:
 - Compact core: OK!!
 - Diffuse emission: difficult to clean/model; tentative jet P.A. ~170°, OK with 22 GHz images, still different w.r.t. >2 and >20 mas
- encouraging result for current mm-VLBI and promising about upgrades
- Preliminary scientific applications:
 - core spectrum; flux density at 86 GHz follows the lower frequency optically thin part
 - $T_{\rm B} > 10^9 \,\rm K$

Mrk501, VLBI summary

- Strong core and a bright one-sided jet.
- Large jet/counterjet ratio
- The jet exhibits multiple bends before undergoing a last turn, followed by rapid expansion in the direction of the symmetric non relativistic kpc scale structure
- Well defined limb brightened structure is visible from ~1 mas up to ~30 mas
- There is no indication of proper motion of components
- Magnetic field
 - core region (0.03 to 0.15 pc) = 0.03 gauss (selfabsorption)
 - Jet region = 0.015 0.010 gauss (equipartition)

VLBI/y-rays

- Radio results seem in disagreement with constraints derived from the high energy emission.
 To reconcile radio and γ
 - rays results we need:
 - a deceleration of the radio jet (but still relativistic up to 1 kpc)
 - an increase in viewing angle

Jet Velocity Structure - Parallel Magnetic Field						
R _{core} pc	0 •	<i>T</i> spine	Sspine	Dayer	dayer	Notes
0.0001 - < 0.03	4	15	15	?	?	γ -ray region
0.03 - 0.15	10	15	4	10	5	Radio core
0.15 - 7	15	15	2	3	5	First jet region
7 - 20	15-20	15	2-1	3	4-3	Before of large bending
20-30	25	10-3	1-2	2	2.5	After the large bending
50	95	1 95	1.8	11	15	Final VI.BI ist region

Notes: R_{core} = projected distance from the core

			TA	BLE 6b		
	Jet Veloc	ity Strue	ture - F	°erpendi	cular Magne	tic Field
core	θ	Γ _{spine}	δ_{spine}	F layer	δ_{layer}	Notes

pc	۰	4	- Aprila			
0.0001 - < 0.03	4	15	15	?	?	γ -ray region
0.03 - 0.15	10	15	4	10	5	Radio core
0.15 - 7	15	15	2	3	5	First jet region
7 - 20	15	15	2	3	4	Before of large bending
20-30	15	10	2.5	3	4	After the large bending
50	15	10	2.5	3	4	Final VLBI jet region

Notes: $R_{eore} = projected$ distance from the core

Mrk 501: Summary

bright and well-known HBL... not detected by EGRET!

- will GLAST detect it?
 - ■YES!
- will GLAST detect other HBLs?Yes, but how many?!
- what is VLBI telling us about it?
 Lots (structure, velocity, motion, ...)
- what could VLBI tell us about other GLAST HBLs?

need to discover!

The End

Thank you!

More plots...

