EGRET Results on AGNs

EGRET Characteristics

- 30 MeV - 30 GeV (little above 10 GeV for AGNs)
- Effective area $\sim 1000 \mathbf{c m}^{2}$
- Energy resolution 8-15\% (1 σ)
- Instrumental background negligible
- 2 year design lifetime, but operated fulltime for 4.5 years, then 4.5 years part-time

EGRET Characteristics (continued)

- Single photon detection, 15-20\% efficiency

First Light Gamma Ray from EGRET

EGRET Characteristics (continued)

By astronomical standards, EGRET had:

* Huge field of view (nearly 1 steradian)
\rightarrow always many objects in FOV, including
several blazars
* Very poor angular resolution

$$
\left(\sim 5^{\circ} \text { at } 100 \mathrm{MeV}, \sim 0.5^{\circ} \text { at } 10 \mathrm{GeV}\right)
$$

Sources localized to $\mathbf{0 . 1}^{\circ}-\mathbf{1 . 0}{ }^{\circ}$

GLAST LAT will have better angular resolution (esp. at high energies), larger effective area (esp. at high energies), and a larger field of view, but (possibly) some instrumental background.

The number of EGRET detected blazars was

 much greater than anticipated, because (at least during flares) the GeV emission can be far higher than predicted by synchrotron self-Compton models.

But in the beginning, we didn't know that. Since the earlier γ-ray telescope COS-B had detected only one AGN, 3C 273, that was what we expected to see. The first chance came very early in the CGRO mission, because of the nearby supernova 1991T (only a few degrees from 3C 273 - remember, large FOV). Here's what we saw:

EGRET SKYMAP. MAP OF INTENSITIES
16-Apr-2007 14:01:09

Great! There it is.

Map Units:
$\mathrm{cm}^{2} \mathrm{~s}^{3} \mathrm{sr}$
Start:
1991-06-16
(0):50:25.815

End:
1991-066-28 19:30:53.569

Energy: $100,99999 \mathrm{MeV}$

Pointing:
$191.54,262$
File:
intens. $\mathrm{vp}(0) 30 . \mathrm{g} 002$
Smoothing:
Sigma $=.75^{\circ}$

Oops...

Eventually, somebody thought to look up the 3C 273 coordinates. They were 10° from the source we were seeing! Could the spacecraft aspect be off that much? We were firmly advised "No Way" (and we already knew from earlier observations that the Crab and Geminga pulsars were seen in the right place). So what was that bright source? And what happened to 3C 273 ?

After a considerable amount of confusion (a bunch of physicists trying to become astronomers), we looked around to see what could possibly be so bright. 3C 279 turned up as the obvious candidate, later confirmed by correlated variations.

But where was 3C 273? After several days, somebody happened to convert the intensity scale to logarithmic: \rightarrow

EGRET AGN Detections

- About 75 blazars with rather high confidence
- about 75\% FSRQs
- about 25\% BL Lacs, including 4 HBLs
(Mrk 421, Mrk 501, 2005-489, 2155-304)
- Probable detection of 3 radio galaxies
- About 55 sources which might be blazars
- About 50 unidentified sources with $|\mathrm{b}|>\mathbf{1 0}^{\mathbf{\circ}}$
- 2 or 3 likely blazars in $|b|<10^{\circ}$

1622-297 and 3C 279 showed EGRET flux variations by factors of $\mathbf{5 0 - 1 0 0}$, and doubling \& halving times as short as 3-8 hours (limited by counting statistics).

Most EGRET detections were of flaring blazars - many observations of specific objects yielded no detection. 3C 279 was detected every time it was observed, but just barely during the very low state in winter 1992-93. Several other FSRQs, including 0208-512 and 3C 454.3, were detected every time there was significant exposure to them, but did not vary much in flux. $0528+134$ varied by at least an order of magnitude, but was detected every time there was significant exposure. It is not clear whether those objects were ever seen in quiescence. As seen by EGRET, the HBL Mrk 421 didn't vary appreciably, but it flared dramatically in X-rays and TeV γ-rays during the EGRET era.

A number of multiwavelength campaigns were carried out: several on 3C 279 and 3C 273 (same FOV), but 0528+134, 1156+295, 0716+714, Mrk 421, 3C 454.3 and CTA 102 (same FOV), 2155-304, OJ 287, 1219+285, 0208-512, Mrk 501 and 3C 345 (same FOV), 0235+164, BL Lacertae, 1622-297, etc., were all studied to varying degrees. (3C 345 was never detected by EGRET, even during a big radio/optical flare.)

Although long-term time correlations between γ-rays and lower frequencies were rather clear, short-term correlations were scarce. The only really clear short-term correlation seen was between the EGRET flux and the RXTE X-ray flux during the large 3C 279 flare in early February, 1996. (There was no detectable time lag either way.)

EGRET AGN Detections (\& possibles)

- The next slide shows all of the firmly identified AGNs, as well as the AGNs possibly associated with EGRET sources. In the ID column, "S-E" refers to the work of Sowards-Emmerd, Romani, and Michelson.
- Note that essentially all of the objects listed have flat radio spectra. For the firm IDs, this is a real correlation, but for the rest, it is partly because the flat-spectrum objects are thought to be the most likely IDs.
- For the firm IDs, the flat spectrum is not just over 1.4-2.7-4.85$8 \mathbf{~ G H z}$ (where flatness has historically been judged) but extends to 90 GHz or higher.

EGRET AGN Detections (continued)

- The 3 detected radio galaxies are listed in green. 3C 111 does not have a flat radio spectrum, but it shows moderate superluminal motion. NGC 6251 is known as a radio galaxy, but it is flat over (at least) $\mathbf{1 - 6 0 ~ G H z}$, with a blazar-like SED.
- The final 3 columns, H(igh) P(olarization), S (uper)L(uminal), and BL (Lac) are incomplete. Updates are welcome.

Name	ID？	Other Name	Max Sign．		$\begin{array}{l\|l} \hline \mathrm{V} & \begin{array}{l} \text { Photon } \\ 2 \end{array} \\ 2 \mathrm{~s}^{-1} & \text { Index } \end{array}$	z	$\begin{aligned} & F \\ & S \end{aligned}$	$\begin{aligned} & \mathbf{H} \\ & \mathbf{P} \end{aligned}$	$\stackrel{s}{\mathrm{~L}}$	$\left\lvert\, \begin{gathered} B \\ L \end{gathered}\right.$	Name	ID？	Other Name	Max Sign．			Photon Index	z	$\begin{aligned} & F \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{P} \end{aligned}$	S	$\left\lvert\, \begin{gathered} B \\ L \end{gathered}\right.$	Name	ID？	Other Name	Max Sign．			Photon	z	F	H	S	
0036－099	S－E	TXS，PMN	4.1	$38{ }_{ \pm}$	$16{ }^{2.7 \pm 0.4}$	2.102	Y				0917＋449	？	B3，54	8.6	$34 \pm$	102	2.2 ± 0.1	2.190	Y		9		1714－336	S－E	PMN	5.2	$84 \pm$	43	2.6 ± 0.2	3.180	Y			
0119＋041	？	OC＋033	4.5	$20_{ \pm}$	62.6 ± 0.7	0.637	Y	Y			0954＋556		4C＋55．17	6.7	$47 \pm$	16	2.1 ± 0.2	0.896	Y	Y			1716－771	？	PKS	4.3	$41 \pm$	23	2.7 ± 0.4		Y			
0130－171	S－E	PKS	4.9	$14 \pm$	72.5 ± 0.3	1.022	Y				0954＋658		S4	6.3	$18_{ \pm}$		2.1 ± 0.2	0.368	Y	Y	Y	L	1725＋044		PKS	5.1	$30 \pm$	19	2.7 ± 0.3	0.296	Y			
0202＋149		4C＋15．04	5.3	$53_{ \pm}$	$26 \quad 2.2 \pm 0.3$	0.405	Y	Y	5		1011＋496	？	87GB	4.0	$13 \pm$		1．9土0．4	0.200	Y			Y	1730－130		NRAO 530	12.1	$105 \pm$	35	2．2土0．1	0.902	Y		7－9	
0208－512		PKS	29.0	$134 \pm$	$25 \quad 2.0 \pm 0.1$	1.003	Y	Y			1055＋567	？	87GB	4.7	$16{ }_{ \pm}$		2.5 ± 0.5	0.143	Y			L	1735－150	S－E？	PMN	5.4	$196{ }_{ \pm}$	49	3．2 ± 0.8	？	Y？			
0210＋119	S－E？	87GB	4.4	$18{ }_{ \pm}$	52.0 ± 0.6	0.252	Y				1101＋384		Mrk 421	9.9	$27 \pm$		1．6土0．2	0.031	Y		1．3，2	H	1739＋522		4C＋51．37	6.4	$45 \pm$	27	2.4 ± 0.2	1.375	Y	Y		
0219＋428		3C 66A	7.9	$25 \pm$	62.0 ± 0.1	0.444	Y	Y	10－19	L	1127－145	？	OM－ 146	6.6	$62 \pm$		2.7 ± 0.3	1.184	Y	？	10－20		1741－038		OT－68	4.6	$49{ }_{ \pm}$	20	2.4 ± 0.4	1.054	Y	Y		
0234＋285	？	4C＋28．07	6.3	$31{ }_{ \pm}$	122.5 ± 0.2	1.213	Y	Y	Y		1130＋009	S－E	PKS	4.3	$52 \pm$	242.7	2.7 ± 0.6	1.640	Y				1759－396	？	PMN	6.0	$146{ }_{ \pm}$	49	3.1 ± 0.4	0.296	Y			
0235＋164		OD＋160	10.0	$65{ }_{ \pm}$	91．9さ0．1	0.940	Y	Y	19－30	L	1156＋295		4C＋29．45	6.2	$163 \pm$		2.0 ± 0.2	0.729	Y	Y	9－14		1804－502		PMN	4.3	$62 \pm$	20	2．9さ0．4	1.606	？			
0239＋175	S－E？	87GB	4.2	$26{ }_{ \pm}$	82.6 ± 0.4	0.551	Y				1219＋285		ON＋231	7.7	$54 \pm$		1.7 ± 0.2	0.102	Y	Y	0．6－2．8	L	1823＋017	S－E	PMN	6.8	$132 \pm$	24	2.8 ± 0.4	1.771	Y			
0322＋222	S－E	87GB	4.2	$29 \pm$	172.6 ± 0.3	2.060	Y				1219－164	S－E？	PMN	4.2	$30 \pm$		2．5土0．5	？	？				1825＋344	S－E	87GB	4.0	$299_{ \pm}$		2.0 ± 0.5	1.814	Y			
0336－019		CTA26	8.6	$178{ }_{ \pm}$	371.8 ± 0.3	0.852	Y	Y	5－12		1222＋216		4C＋21．35	9.3	$48{ }_{ \pm}$	15	2.3 ± 0.1	0.435	Y		8．5－15		1830－211		PKS	7.8	$9^{99} \pm$	25	2.6 ± 0.1	2.507	Y			
0414－189		PKS	4.5	$50 \pm$	$16{ }_{3.3 \pm 0.7}$	1.536	Y				1226＋023		3C 273	10.1	$48{ }_{ \pm}$	12	2.6 ± 0.1	0.158	Y		2．3－11		1845－273	S－E	PMN	4.2	$9^{90} \pm$	30	2.3 ± 0.5	？	N			
0415＋379		3C 111	5.3	$77{ }_{ \pm}$	50	0.048	NO		3.5		1229－021		4C＋02．55	5.1	$16{ }_{ \pm}$		2．9 ± 0.3	1.043	Y				1902－119	S－E	PMN	5.6	$76{ }_{ \pm}$	33	2．6土0．2	？	Y			
0419＋175	S－E？	87GB	6.5	$64 \pm$	342.4 ± 0.2	0.908	？				1236＋049	？	87GB	4.7	$15 \pm$		2.5 ± 0.5	1.762	Y				1908－201		OV 213	7.2	$37 \pm$	20	2.4 ± 0.2	1.119	Y		10	
0420－014		OA＋129	6.8	$64 \pm$	342.4 ± 0.2	0.915	Y	Y	6		1243－072		ON－73	5.2	$44 \pm$	302	2.7 ± 0.2	1.286	Y				1920－211	？	OV－235	4.4	$29 \pm$	8	？	0.874	Y			
0430＋289		87GB	8.7	$76{ }_{ \pm}$	221.9 ± 0.1	？	Y	？	？	？	1253－055		3C 279	42.2	$1045{ }_{ \pm} 1$	082	2.0 ± 0.1	0.538	Y	Y	3．5－6		1933－400		PKS	5.2	$94 \pm$	31	2．9土0．4	0.965	Y			
0440－003		NRAO 190	10.9	$86{ }_{ \pm}$	12 2．4土0．2	0.844	Y	Y	10		1310－041	S－E？	PKS	5.0	$24 \pm$		2.3 ± 0.2	0.825	Y				1936－155		OV－161	4.0	55.	19	3.5 ± 1.3	1.657	Y	Y		
0446＋112		PKS	7.7	$110 \pm$	192.3 ± 0.2	1.207	Y				1313－333	？	OP－322	7.1	$32 \pm$	192.	2.3 ± 0.2	1.210	Y			Y	2002－233		PMN	5.3	$44 \pm$	13	2.3 ± 0.4	0.830	Y	Y		
0454－234		OF－292	4.4	$15 \pm$	43.1 ± 0.5	1.003	Y	Y		L	1322－427	？	Cen A	6.2	$39 \pm$	152.	2.6 ± 0.3	0.002	NO		NO		2005＋642	S－E	87GB	4.9	$25_{ \pm}$	11	2.4 ± 0.3	1.574	Y			
0454－463		PKS	4.3	$23 \pm$	72.8 ± 0.4	0.858	Y				1324＋224		B2	5.9	$68{ }_{ \pm}$	231.	1．9£0．4	1.400	Y				2005－489		PKS	4＋＊			hard	0.071	Y			
0458－020	？	4C－02．19	5.5	$68{ }_{ \pm}$	412.5 ± 0.3	2.286	Y	Y	9		1331＋170		OP＋151	4.2	$33 \pm$	192	2.4 ± 0.5	2.084	Y				2013＋370	HEM	TXS，NVSS	6.4	$83_{ \pm}$	27	2.1 ± 0.1	0.025	Y			
0459＋060	？	OF＋99．3	4.5	$34 \pm$	182.4 ± 0.4	1.106	Y				1334－127		OP－158．3	4.1	$20 \pm$	122	2.6 ± 0.4	0.539	Y	Y		L	2022－077		NRAO 629	7.6	$74 \pm$	13	2.4 ± 0.2	1.388	Y			
0506－612	？	PKS	4.8	$29 \pm$	122.4 ± 0.3	1.093	Y	NO		Y	1340＋289	S－E？	B2	4.2	$21 \pm$		2.5 ± 0.6	0.905	Y				2023＋335	S－E？	B2	5.8	$99 \pm$	29	2.3 ± 0.2	0.219	Y			
0510＋559	S－E？	87GB	7.0	$56 \pm$	24 2．2土0．2	2.190	Y				1406－076		OQ－10	16.2	128 \pm	232	2.3 ± 0.1	1.494	Y		18－28		2027－308	S－E	PKS	4.0	$32 \pm$	20	3．4土0．8	？	Y			
0521－365	？	PKS	21.4	$32 \pm$	72.6 ± 0.4	0.055	？	Y		L	1417＋385	S－E？	B2	4.4	$21 \pm$		3.2 ± 0.5	1.831	Y				2032＋107		OW＋154	4.9	$36 \pm$	15	2．8土0．3	0.601	Y	Y		
0527－359	S－E？		＂	＂	＂＂	4.172					1424－418		PKS	6.8	$55 \pm$	162	2.1 ± 0.2	1.522	Y	Y			2047＋098	S－E	PKS	4.1	$40 \pm$	18	2.2 ± 0.5	？	Int			
0528＋134		OG＋147	33.4	351 \pm	372.5 ± 0.1	2.060	Y		8－24		1454－354	S－E	PKS	4.4	$30 \pm$	143	3.0 ± 0.4	1.422	Y				2052－474		PKS	5.0	$35 \pm$	21	2．0土0．4	1.489	Y			
0529＋483	S－E？	87GB	5.5	$33 \pm$	17 2．6 0 0．2	1.162	Y				1501－343	S－E	PMN	＂	＂		＂	？	Y				2105＋598	？	4C＋59．33	5.3	$33 \pm$	10	2.2 ± 0.3	？	Y			
0537＋251	S－E？	87GB	5.1	74土	352.7 ± 0.2	0.623	Y				1456－179	S－E？	PMN	4.3	$37 \pm$	122	2.7 ± 0.4	？	Y				2155－304		PKS	5.9	$30 \pm$		2．4土0．3	0.116	Y		Y	
0537－286	？	OG－263	4.2	$35 \pm$	122.5 ± 0.6	3.104	Y				1504－166	？	OR－102	4.4	$33 \pm$	10	？	0.876	Y	Y			2200＋420		BL Lac	10.6	$40 \pm$	12	2.6 ± 0.3	0.069	Y	Y	2.26	
0537－441		PKS	10.6	91 \pm	15 2．4土0．1	0.894	Y	Y		L	1510－089		OR－017	5.6	$49 \pm$	182	2.5 ± 0.2	0.360	Y	Y	4－9		2206＋650	？	87GB	5.2	$31 \pm$	13	2.3 ± 0.3	1.120	Y			
0539－057	？	PKS	4.4	$67 \pm$	20	0.839	Y	Y			1514－241	？	AP Lib	4.2	$37 \pm$	182	2.7 ± 0.4	0.049	Y	Y		L	2209＋236		PKS	4.3	$46 \pm$	20	2.5 ± 0.5	1.125	Y			
0616－116		PMN	4.6	$48 \pm$	162.7 ± 0.4	0.970	Y				1529－230	S－E？	PMN	4.7	94 \pm	282	2.7 ± 1.0	2.290	Y				2230＋114		CTA 102	8.5	52土	15	2.5 ± 0.1	1.037	Y	Y	9－12	
0716＋714		S5	10.9	$46 \pm$	112.2 ± 0.1	~ 0.300	Y	Y	11－15	L	1604＋159		4C＋15．54	4.7	42 \pm	122	2.1 ± 0.4	0.357	Y	Y		L	2250＋194	？	87GB	4.0	$62 \pm$	22	2.4 ± 0.6	0.284	Y			
0735＋178		OI＋158	6.1	$29 \pm$	$102.6 \pm 0.3>$	＞0．424	Y	Y	7	L	1606＋106		4C＋10．45	7.9	$62 \pm$	132	2.6 ± 0.2	1.226	Y		＞2		2251＋158		3C 454.3	17.9	116 \pm	18	2．2 ± 0.1	0.859	Y	Y	4－16	
0738＋548		87 GB	8.1	42土	82.0 ± 0.2	0.723	Y			Y	1611＋343		OS＋139	8.7	$69 \pm$	142	2.4 ± 0.2	1.401	Y		8－24		2255－282		PKS	9.6	$140 \pm$	27	1．7土0．2	0.926	Y			
0803＋514	？	87GB	4.3	$23 \pm$	142.8 ± 0.3	1.136	Y				1622－253		OS－237．8	7.5	$82 \pm$	352	2.2 ± 0.1	0.786	Y				2320－035		PKS	5.1	$38 \pm$	10	？	1.410	Y			
0804＋499	？	OJ＋508	5.1	$15 \pm$	62.2 ± 0.5	1.430	Y	Y			1622－297		PKS	24.7	1700 ± 3	3002	2.2 ± 0.1	0.815	Y		4－11		2346＋385	？	S3	4.8	$38 \pm$	10	2.5 ± 0.7	1.032	Y			
0805－077	？	PKS	5.8	$40 \pm$	132.3 ± 0.3	1.837	Y				1625－141	S－E？	PKS	4.5	$70 \pm$	402	2.1 ± 0.2	1.100					2351＋456		4C＋45．51	4.6	$43 \pm$	20	2.4 ± 0.4	1.992	Y			
0827＋243		OJ＋248	8.2	111 \pm	602.4 ± 0.2	0.939	Y		25－27		1626－172	S－E？	PMN	4.1	$99 \pm$	32	？	？	Y ？				2356＋196		OZ＋193	4.2	$26 \pm$		2.1 ± 0.4	1.066	Y			
0829＋046		OJ＋49	4.1	$34 \pm$	16 2．5土0．4	0.180	Y	Y	3－11	L	1633＋382		4C＋38．41	17.3	$108 \pm$	102	2.2 ± 0.1	1.814	Y		7－10													
0836＋710		4C＋71．07	6.6	$33 \pm$	92.6 ± 0.2	2.172	Y		14		1637＋826	MHM	NGC 6251	4.1	$12 \pm$		2.3 ± 0.5	0.025	Y															
0847－120		PMN	5.2	$44 \pm$	121.6 ± 0.6	0.566	？				1642－076	S－E？	PMN	4.1	$67 \pm$	282	2.4 ± 0.4	0.139	？															
0851＋202		OJ＋287	4.2	16土	72.0 ± 0.4	0.306	Y	Y	5－8	L	1652＋39 8		Mrk 501	5＋＊				0.034	Y	Y	1.5	H												

April 23， 2007
Hartman，GLAST－VLBI Conference

