VLBI and Blazars (and other AGN): What have we learned?

Dan Homan Department of Physics and Astronomy Denison University

What Can VLBI Tell Us?

3C380: 15.4 GHz from MOJAVE Program. Speeds up to 13c (Lister et al., in prep.)

What do we want to know?

What are the basic intrinsic properties of Jets?

Bulk Lorentz factor

$$\Gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

- Intrinsic Luminosity, L_{int}
- Intrinsic Brightness Temperature, T_{int}
- Energy budget of Jet
 - Bulk K.E.
 - Particle vs. Field Energy

What do we want to know?

Other questions

- How are jets accelerated/collimated?
- How do jets interact with their environment?
- Shocks in Jets
 - Role in Gamma-Ray emission?
 - How are they formed/propagate?
 - Sites of active conversion of bulk K.E. into particle/field energy
 - Standing shocks at the base of jet?
- What is the transverse structure of jets?
- B-Field structure and Particle population of Jets

Relativistic Complications

Its are fast ($\Gamma > 1$) and close to our line of sight $\beta_{app} = \frac{\beta \sin \theta}{1 - \beta \cos \theta}$ Apparent Speed: $\beta_{app_max} \approx \Gamma$ when $\theta = \Gamma^{-1}$ • Doppler Beaming: $\delta = \frac{1}{\Gamma(1 - \beta \cos \theta)}$ • Observed Luminosity $L_{obs} = L_{int} \delta^{n+\alpha}$ n = 2, 3• Observe Brightness Temp. $T_{obs} = T_{int}\delta$

Distributions of Observed Speeds

EGRET Blazars (λλ 0.7cm, 1.3cm) (Jorstad et al. 2001)
33 Jets – Distribution peaks at ~ 12c with a tail up to ~ 40c
2cm Survey (Kellermann et al. 2004) – 110 jets
Most speeds range from 0 – 15c with a tail up to 34c
RRFID analysis (λ = 4 cm) (Piner et al. 2007) – 54 jets
Consistent with 2 cm Survey with tail up to 30c
CJ Survey (λ = 6 cm) (Vermeulen et al. 2003) – 262 jets

■ Most speeds range from $\sim 0 - 11c$ with a tail up to $\sim 22c$

All 'converted' to use ~ $H_0 = 70 \text{ km/s/Mpc}$, $\Omega_M = 0.3$, $\Omega_{\Lambda} = 0.7$

Lessons from Speed Distributions?

- Many jets have β_{app} > 10 → Γ > 10 are common
 Max observed Speed ~ Maximum Γ

 (e.g. Lister & Marscher 1997)
 → Γ_{max} ~ 40 for Blazar Jet Population
- Comparison with studies of individual components... Jorstad et al. (2005) estimated δ from fading times of components in 15 jets: δ and β_{app} → Γ
 Found Γ ranged from 5 to 40
 for most quasar components Γ ~ 16 -18

β_{app} vs Observed Luminosity

Observed Brightness Temps.

For jet cores, T_{obs} measurements and limits range from 10^{11} K to 5 x 10^{13} K, a few > 10^{14} K (Hirabayashi et al. 2000; Frey et al. 2000; Tingay et al 2001; Horiuchi et al. 2004; Kovalev et al. 2005)

Compare to the equipartition value of $\sim 10^{10.5}$ K (Readhead 1994) and the inverse compton limit of $\sim 10^{11.5}$ K (Kellermann & Pauliny-Toth 1969)

 \rightarrow Doppler boosted observed values: $T_{obs} = T_{int}\delta$

Jets aren't Straight

Kellermann

Non-Ballistic Motions

 ~1/3rd of features are moving "non-radially" (Kellermann et al. 2004; Piner et al. 2007)

 Tend to be in direction of next jet structure (Kellermann et al. 2004)
 Motion along pre-determined channels?

Evidence for Ballistic Ejections

Lister et al, in prep. MOJAVE program

Evidence for Multiple Ejection Angles

3C279 (Abraham & Cararra 1998, Wehrle et al. 2001, Jorstad et al. 2004), 3C345 (Caproni & Abraham 2004, Lobanov & Roland 2005), BL Lac (Stirling et al. 2003)
 Precession?

How do the jets become collimated further out?
 Bends to give observed non-radial motions?

Caught in a Bend!

Acceleration of Jet Components?

Contradictory Evidence

→ Some indications of acceleration along jet (e.g. Hough et al. 1996; Unwin et al. 1997; Homan et al. 2001; Jorstad et al. 2005)

→ But the fastest motions are observed at the highest frequencies which probe closest to jet "core"... (e.g. Jorstad et al. 2001; Kellermann et al. 2004)

Transverse Structure of Jets

Lobanov & Zensus (2001)

- Double Helical Structure in 3C273?
 - Consistent with K-H plasma instabilities

VLBI Polarization of Jets

B-fields as a tracer of jet dynamics
 Shocks, Shear, etc...

3-D field structures of jets?
Connection with SMBH/accretion disk system?
Do Jets carry a current?

A probe of particle population in jets

Linear Polarization in Jets

Fractional Polarization

- Cores ~ few percent up to 10%
- If Jet features $\sim 5-10\%$ up to a few tens of percent
- EGRET detected jets and jet components have higher average fractional polarization than non-EGRET jets (Lister & Homan 2005)
- Also have brighter jet components by ~ x 2 (Lister & Homan)
- \rightarrow Both related to higher Doppler factors for EGRET jets?
- \rightarrow OR both related to stronger shocks in EGRET jets?

Possible Field Order in Jets

Evidence for Helical/Toriodal Fields

 Gradients in Faraday Rotation Across Jets... (Asada et al. 2002; Gabuzda et al. 2004; Zavala & Taylor 2005; Attridge et al. 2006)

Due to Toroidal field structures within jets or in a boundary layer surrounding them?

Jets with long sections of transverse B-field
 1803+784 (Gabuzda 1999)

If Toroidal Fields \rightarrow jets carry a current

Tracing Jet Hydrodynamics

VLBA 22 GHz Observations of 3C120

José–Luis Gómez Alan P. Marscher Antonio Alberdi Svetlana Marchenko–Jorstad Cristina García–Miró IAA (Spain) BU (USA) IAA (Spain) BU (USA) IAA (Spain)

So what have we learned (from VLBI)?

- Apparent Speeds of jets range up to 30-40
 → Maximum Γ ~ 40 in jets
- Apparent speeds of jet features are connected with jet luminosity and brightness temp.
 - Through Doppler factor (?)
 - \rightarrow Can extract intrinsic values for L and T
- **EGRET** detected jets....
 - Are faster (?)
 - Are more compact (Kovalev et al. 2005)
 - Have brighter jet components with more polarization
 - \rightarrow Greater Γ , more favorable angle to l.o.s.? Both?

So what have we learned (from VLBI)?

- Jet structure and flow is complicated
 - Do (some) jets precess?
 - How are jets accelerated and collimated?
 - Will there be a connection between 'events' in jet features and Gamma-ray emission?
- Polarization data is rich and complicated
 - Do jets have Toroidal fields? Carry a current?
 - What can we learn about the particle population of jets?

This Slide Intentionally Left Blank

Apparent Speed:

 $\beta_{app} = \frac{\beta \sin \theta}{1 - \beta \cos \theta}$

Quasar 1055+018, $\lambda = 6 \text{ cm}$

Attridge 1998; Attridge, Roberts, & Wardle 1999

z = 0.889

