#### VLBA mm monitoring



Collaborators:

A. Marscher, M. Aller, I. McHardy, M. Tornikoski, H. Teräsranta B.T. Balonek, V. Larionov, V. Hagen-Thorn, G. Tosti, H. Miller





#### VLBA mm-monitoring

- •Short timescale of the variability  $\leq 2-3$  week
- Fast separation of knots from the core
- Different trajectories of components.
- Some moving knots are brighter than the core
- Trailing components
- Jet bending
- Compact knots and diffuse features

Contours are in factors of 2 starting at 11 mJy/beam. The restoring beam is  $0.38 \times 0.14$  mas at PA=-9°.

![](_page_3_Figure_0.jpeg)

![](_page_4_Figure_0.jpeg)

- High activity in 1996, 1997.5-2000, & 2004-2006
- The strongest flare in 2001
- Quiescent state in 1997 & in 2003

# Correlation between X-ray Flux and Core Brightness

![](_page_5_Figure_1.jpeg)

![](_page_6_Figure_0.jpeg)

![](_page_7_Figure_0.jpeg)

### Deriving of Jet Parameters

![](_page_8_Figure_1.jpeg)

I. 
$$\beta_{app} = \beta \sin \Theta_o / (1 - \beta \cos \Theta_o)$$
  
 $\beta = \sqrt{1 - \Gamma^{-2}}$   
II.  $\delta = \Gamma^{-1} (1 - \beta \cos \Theta_o)^{-1}$ 

Time Scale of Variability Burbidge, Jones, & O'Dell 1974, ApJ, 193, 43  $\Delta t_{var} = dt/ln(S_{max}/S_{min})$ 

Variability Doppler Factor  $\delta_{var} = aD/[c \Delta t_{var} (1+z)]$ D - luminosity distance a = 1.6ss - VLBI size of component c - speed of light

z - redshift

![](_page_9_Figure_0.jpeg)

![](_page_9_Figure_1.jpeg)

During a high activity period:  $\Gamma \approx 17, \ \Theta_{o} \approx 2^{\circ}, \ \delta \approx 20$ During the strong 2001 flare:  $\Gamma \approx 15$ ,  $\Theta_0 \approx 0.6^\circ$ ,  $\delta \approx 30$ During a quiescent state:  $\Gamma \approx 5, \ \Theta_{0} \approx 6^{\circ}, \ \delta \approx 10$ 

### VLBA mm monitoring in the GLAST era

1. Monthly monitoring of a sample of ~35 EGRET blazars at 43GHz

| Source     |      | z     | RA(J2000)         | DEC(J2000)        |                 | V <sup>1</sup> | $Pol(\%)^2$ |
|------------|------|-------|-------------------|-------------------|-----------------|----------------|-------------|
|            | Type |       | · · · ·           |                   | $S_{43GHz}(Jy)$ |                | ` ´         |
|            |      |       |                   |                   |                 |                |             |
| 0202+149   | Q    | 0.405 | 02 04 50.4139     | +15 14 11.043     | 1.0             | 20.9           | 3.2 (1)     |
| 0234 + 285 | Q    | 1.213 | $02\ 37\ 52.4056$ | +28 48 08.990     | 1.5             | 18.9           | 11.3 (1)    |
| 0235 + 164 | BL   | 0.94  | 02 38 38.9301     | +16 36 59.275     | 1.0             | 16.0           | 15 (2)      |
| 0336-019   | HPQ  | 0.852 | 03 39 30.9377     | -01 46 35.803     | 2.5             | 17.5           | 19(1)       |
| 0420 - 014 | HPQ  | 0.914 | 042315.8007       | $-01\ 20\ 33.064$ | 3.5             | 17.8           | 19 (3)      |
| 0440-003   | HPQ  | 0.844 | 044238.6607       | -00 17 43.418     | 0.7             | 18.5           | 13 (1)      |
| 0458 - 020 | HPQ  | 2.286 | 05 01 12.8098     | -01 59 14.255     | 1.3             | 19.5           | 4.7(2)      |
| 0528 + 134 | HPQ  | 2.06  | 05 30 56.4167     | +13 31 55.150     | 4.0             | 20.5           | 4 (3)       |
| 0716 + 714 | BL   | 0.3   | $07\ 21\ 53.4484$ | +71 20 36.363     | 0.4             | 11.0           | 12.5 (2)    |
| 0735+178   | BL   | 0.424 | 07 38 07.3937     | +17 42 18.998     | 0.5             | 15.5           | 14(1)       |
| 0836+710   | HPQ  | 2.172 | 08 41 24 3652     | +70 53 42.173     | 2.0             | 16.5           | 1.1(1)      |
| 0851 + 201 | BL   | 0.306 | $08\ 54\ 48.9000$ | $+20\ 06\ 30.641$ | 1.2             | 15.0           | 30 (4)      |
| 0954 + 658 | BL   | 0.368 | 09 58 47.2451     | +65 33 54.818     | 0.6             | 15.3           | 19 (5)      |
| 1127 - 145 | Q    | 1.18  | 11 30 07.0525     | -14 49 27.387     | 1.0             | 16.9           | 1.3(1)      |
| 1156 + 295 | HPQ  | 0.729 | 11 59 31.8339     | +29 14 43.827     | 1.5             | 15.6           | 9.2 (2)     |
| 1219 + 285 | BL   | 0.102 | 12 21 31.6905     | +28 13 58.500     | 0.3             | 15.5           | 30 (6)      |
| 1222 + 216 | Q    | 0.435 | $12\ 24\ 54.4583$ | +21 22 46.388     | 1.0             | 17.5           | -           |
| 1226+023   | Q    | 0.158 | $12\ 29\ 06.6997$ | +02 03 08.598     | 10              | 12.5           | 0.5(3)      |
| 1253 - 055 | HPQ  | 0.536 | 125611.1665       | -05 47 21.523     | 20              | 15.0           | 39 (3)      |
| 1406 - 076 | Q    | 1.494 | 140856.4811       | -07 52 26.665     | 0.7             | 18.4           | -           |
| 1510-089   | HPQ  | 0.361 | 15 12 50.5329     | -09 05 59.828     | 2.5             | 15.5           | 4 (3)       |
| 1606 + 106 | Q    | 1.226 | $16\ 08\ 46.2031$ | +10 29 07.776     | 1.0             | 18.5           | -           |
| 1611 + 343 | ଦ୍   | 1.400 | 161341.0642       | $+34\ 12\ 47.908$ | 5.0             | 17.5           | 1.6(2)      |
| 1622 - 253 | Q    | 0.786 | $16\ 25\ 46.8916$ | -25 27 38.326     | 2.5             | 18.7           | 2.8(1)      |
| 1622 - 297 | Q    | 0.815 | 16 26 06.0208     | -29 51 26.970     | 3.0             | 20.5           | -           |
| 1633 + 382 | HPQ  | 1.814 | $16\ 35\ 15.4929$ | +38 08 04.500     | 1.0             | 17.0           | 2.6(1)      |
| 1641 + 399 | HPQ  | 0.593 | $16\ 42\ 58.8099$ | +39 48 36.993     | 8.5             | 16.0           | 38 (3)      |
| 1730-130   | Q    | 0.902 | 17 33 02.7057     | -13 04 49.547     | 10.0            | 18.5           | -           |
| 1739 + 522 | HPQ  | 1.375 | $17\ 40\ 36.9778$ | +52 11 43.407     | 0.7             | 18.5           | 4 (5)       |
| 2223-052   | HPQ  | 1.404 | $22\ 25\ 47.2592$ | -04 57 01.390     | 3.0             | 18.0           | 2.4(2)      |
| 2230+114   | HPQ  | 1.037 | $22\ 32\ 36.4089$ | +11 43 50.904     | 2.5             | 16.5           | 9.5 (3)     |
| 2251 + 158 | HPQ  | 0.859 | 225357.7479       | $+16\ 08\ 53.560$ | 6.0             | 16.0           | 6.2 (3)     |

≻Time sequences of images  $\rightarrow$  apparent motions (usually superluminal)  $\rightarrow$  sites of flux increase/decrease ≻Ultra-high resolution: subparsec for low-z objects, parsecs for high-z (angular resolution  $\sim 0.1$  milliarcsec at 43 GHz) ≻Time of ejection and light curves of superluminal components ➤ Total and polarized intensity maps along with modelling parameters of jet components will be posted at our website:

www.bu.edu/blazars/

# Polarization Maps of Quasars

![](_page_11_Figure_1.jpeg)

![](_page_11_Figure_2.jpeg)

![](_page_11_Figure_3.jpeg)

![](_page_11_Figure_4.jpeg)

![](_page_11_Figure_5.jpeg)

# Polarization Maps of BL Lac Objects

![](_page_12_Figure_1.jpeg)

Identification of components across epochs
 Orientation of magnetic field
 Degree of ordering of magnetic field
 Changes in magnetic field structure

# Multiwavelength Monitoring

- X-ray fluxes & spectral index: RXTE (3C279, 3C273 1510-089, 3C111, 3C120, BL Lac)
- Radio fluxes & polarization:
- ➤ UMRAO database 4.5, 8, & 14.5 GHz
- Metsähovi database 37 & 22 GHz
- ➢ IRAM 90 & 230 GHz, perhaps SMA
- CARMA calibration data 90 & 230 GHz
- ➤ Near-IR/optical total flux:
  - Liverpool Telescope, Lowell Obs., U. Nebraska, Perugia U., Crimean Astrophys. Obs., many others