VLBI in the GLAST era – AGN studied with few 10 microarcsecond resolution

T.P.Krichbaum (on behalf of many people involved in the GMVA)

Max-Planck-Institut für Radioastronomie, Bonn, Germany

e-mail:tkrichbaum@mpifr-bonn.mpg.de

Examples of the spectral energy distribution (SED) of Blazars: Need full electromagnetic spectrum frequency coverage to study correlated variability !

<u>The Origin of γ – rays in Blazars ?</u>

Seed photons for inverse Compton scattering from:

ECC: External Comptonization from BLR Clouds

Sy: direct Synchrotron, shock acceleration

<u>RSy:</u> Reflected Synchrotron Comptonization

ECD: External Comptonization from Disk

<u>SSC:</u> Synchrotron Self-Compton in Jet

EVN Radio-telescopes and affiliate antennas

(SEFD's in Jy)

Station	Country	Code	Diameter	92cm	49cm	30cm	21cm	18cm	13cm	6cm	5cm	3.6cm	1.3cm	0.7cm	0.3cm
Jodrell Bank	England	Jb1	76	132	83		36	44		yes					
Jodrell Bank	England	Jb2	25				350	320		320	910		910		
Cambridge	England	Cm	32				220	212		136	900		720		
Westerbork	Netherlands	Wb	14x25m	150	90	120	30	30	60	60	1600	120		•	
Effelsberg	Germany	Eb	100			65	20	19	300	20	25	20	90	500	952
Medicina	Italy	Мс	32				490	600	400	170	840	320	1200		
Noto	Italy	Nt	32	980	yes	1025	820	784	770	260	yes	770	800	900	4500:
Onsala	Sweden	On85	25			900	320	320		600	1500	r.			
Onsala	Sweden	On60	20						1110			1630	1380	1310	5858
Shanghai	China	Sh	25					540	1792	664		708	2185		
Urumqi	China	Ur	25	3020		2400	240	240	880	200		450	2950		
Torun	Poland	Tr	32			2000	250	230		220	400				
Metsahovi	Finland	Mh	14						4500			3200	2608	4500	23900
Hartebeesth.	S. Africa	Hh	26					450	380	795	680	940			
Arecibo	USA	Ar	305	12	12	3	3,5	3	3	5	5	6			
Wettzell	Germany	Wz	20						1250			750			
Robledo	Spain	Rob70	70					35	20			18	83		
Robledo	Spain	Rob34	34						150			106			
Simeiz	Ukraine	Sm	22	2000	1600			900	800	400		1200	3000		
Pico Veleta	Spain	Pv	30												710
PI. de Bure	France	PdB	6x15m												600
VLBA	USA	VLBA	10x25m	2227	2216		296	303	330	312		350	888	1436	4000

EVN/Global VLBI: Frequency coverage

EVN/Global VLBI: Angular Resolution

(numbers in milli-arcsec)

Array	90cm	18cm	6cm	3.6cm	1.3cm	0.7cm	0.3cm
EVN	-	15	5,0	3,0	1,00	0,55	-
EVN+Ur/Sh	30	5	1,5	1,0	0,30	-	-
EVN+VLBA	19	3	1,0	0,7	0,25	0,13	-
VLBA	21	4	1,4	0,9	0,30	0,17	0,10
GMVA	-	-	-	-	-	-	0,04

spatial scale: for z = 1 (Λ CDM cosmology), 1 mas = 8 pc

sub-pc scale resolution only for global VLBI at $\lambda \leq 7$ mm !

The Global Millimeter VLBI Array – VLBI Imaging at 86 GHz with ~40 μas resolution

Baseline Sensitivity in Europe: 22 - 200 mJyin US: 100 - 140 mJytransatlantic: 40 - 70 mJyArray: 1.1 mJy / hr

http://www.mpifr-bonn.mpg.de/div/vlbi/globalmm

- Europe: Effelsberg (100m), Pico Veleta (30m), Plateau de Bure (35m), Onsala (20m), Metsähovi (14m)
- Amerika: 8 x VLBA (25m)

(assume 7σ , 100sec, 512 Mbps)

Proposal deadlines: February 1st, October 1st

EVN/Global VLBI: Image Sensitivities

(numbers in µJy/beam)

Array	90cm	18/21cm	6cm	3.6cm	1.3cm	7mm	3mm
EVN	248	28	29	65	254	917	-
VLBA	691	91	97	95	156	321	895
Global	170	20	21	35	121	278	-
HSA	34	7	8	9	45	84	-
GMVA	-	-	-	-	-	-	(290)

assumptions: 512 Mbit/s, single polarisation, 2 bit sampling, 60 min. on source 1 sigma thermal noise, natural weighting

Angular and Spatial Resolution of mm-VLBI

λ	ν	θ	z=1	z=0.01	d=8 kpc
3 mm	86 GHz	45 µas	0.36 pc	9.1 mpc	1.75 µpc
2 mm	150 GHz	26 µas	0.21 pc	5.3 mpc	1.01 µpc
1.3 mm	230 GHz	17 µas	0.13 pc	3.4 mpc	0.66 µрс

linear size:

10³ R_s⁹ 30-100 R_s⁹ 1-5 R_s⁶

for the nearest sources these scales correspond to a few to a few ten Schwarzschild radii, depending on distance and BH mass

→ mm-VLBI is able to directly image jets at the vicinity of SMBHs !

→ best candidates: Sgr A*, M87 (Cen A far south, NGC 4258 too faint)

Global mm-VLBI at 150 - 230 GHz

Kitt Peak, 12m

angular resolutions: for 230 GHz

Pico Veleta, 30m

Plateau de Bure, 6v15m

Metsähovi, 14m

Antonucci et al. 1986 (VLA 20 cm)

Bach et al. 2005

The misaligned jet of NRAO150: sub-mas scales

3 mm-VLBI images GMVA and CMVA

3 mm-VLBI shows jet rotation with an angular speed of ~ 10°/yr and an extrapolated period of 20-25 yrs

Frame dragging

matter and fields are forced to rotate with the horizon

torque due to misaligne- ment of $\vec{\mathcal{L}}$ from accr. disk and Kerr BH	
\rightarrow P =0.3 - 20 yrs can be explained	
(Caproni et al., 2004)	

known "prec sources:	<u>cessing"</u>
3C84	Gal
NRAO150	QSO
0716+714	BL
3C120	Gal
3C273	QSO
3C279	QSO
3C345	QSO
BLLac	BL
OJ287	BL

In M87 (and in SgrA*) global 3mm VLBI provides a spatial resolution of a few 10 Schwartzschild radii ($\sim 20 R_S$), facilitating direct images of the vicinity of SMBHs.

The diameter of the light-cylinder determines the jet width:

Fig. 11. The parsec-scale structure of magnetized jets in Quasars (Courvoisier and Camenzind, 1989). The central accretion disk carries a rotating magnetosphere which is strongly deformed by the presence of the light cylinder. The escaping disk-wind material is collimated outside the light cylinder by pinching forces. Stationary synchrotron emission (IR) occurs either near the light cylinder or the outer edge of the jet. The hot wind material can efficiently cool by Comptonization of the UV-flux from the inner disk and produce the hard X-ray emission (X).

Camenzind, 1990

jet width $\ge 2 \gamma R_s$

Casse & K

2004

 $> 40 R_{e}$

A double rail structure in the jet of 3C273 – decollimation at 3 pc ?

 $1 \text{mas} \approx 2.7 \text{ pc}$

Clean LL map. Array: ESPPFdHnNIOvPtKpMkLd 3C273B at 86.222 GHz 2003 Apr 27

Evidence for jet stratification from y- ray observations of AGN

Fig. 1. Cartoon illustrating the layer+spine system.

need to reconcile the need of high Doppler-factors from strong TeV emission and rapid variability ($\tau_{\gamma-\gamma}$) with the lower Doppler-factors derived from the (relatively slow) superluminal motion in TeV BL Lacs.

seed photons from slow jet layer help to enhance γ -ray luminosity !

transverse

stratification !

Fig. 2. Example of the SED produced by the spine-layer system, using the parameters listed in Table 1. Dashed lines correspond to the emission of the spine (layer) without taking into account the seed photons coming from the layer (spine). Data from Pian et al. (1998) and Djannati-Atai et al. (1999).

A prominent Gamma-Ray flare of 3C454.3 in May 2005

Pian et al., 2006, Villata et al., 2006, Fuhrmann et al., 2006, ...

Fig. 4. Spectral energy distribution of 3C 454.3 showing contemporaneous radio, near-IR, optical, and X-ray (Chandra and INTEGRAL) data during May 15–20, 2005. Previous data are also plotted for comparison, together with two other spectra from the WEBT campaign (see text for further details).

View of the secondary focus cabin (apex) of the MPIfR 100 m Radiotelescope at Effelsberg, Germany.

flexible change of receivers, ranging from 2.7 GHz (11 cm) to 43 GHz (7 mm) within 20 – 30 sec switching time.

apex cabin closed for observations with prime focus receivers

picture: MPIfR, Bonn

Secondary Focus Cabin of 100m RT

cm. 4cm

9mm

2cm, 1cm, 7mm

11cm

2000

2005

1995

90 – 230 GHz

230, 350 GHz

1.3 mm

frequency [GHz]

on the right, combined data:

H. & M. Aller, et al.

1990

time [years]

SMA:

1985

1980

15

10

flux density [Jy]

Krichbaum, Ungerechts, Wiesemeyer, Gurwell et al.

Clean I map. Array: BFHKLMNOPS 3C454.3 at 43.218 GHz 2005 Oct 06

43 GHz (data from A. Marscher, re-mapped)86 GHz (GMVA, this paper)

86 GHz image 5 months after Outburst

core elongation at r = 0.1-0.2 mas

highest resolution: 54 μas or 0.42 pc or 4274 $R_s^{~9}$

(problem: limited uv-coverage)

Quasi-simultaneous mm-VLBI observations of 3C454.3 after outburst <u>43 GHz:</u> no emission near core known jet emission at 0.3 -1.4 mas conclusion:

strong absorption in the 0.1-0.3 mas region,

i.e. on the 1-2 pc scale

spectral index : +1.1 + 2.6 (range of uncertainty)

86 GHz: emission near core clearly visible jet components at 0.6 & 1.1mas compare well to 43 GHz image

Variability and Outburst-Ejection relations

Long-term VLBI studies of 3C273:

Superluminal jet components appear about once per year.

Most jet components appear at the time of the <u>ONSET</u> of a mm-flare.

High gamma-ray fluxes are measured at the <u>ONSET</u> or during the <u>RISE</u> of the mm-flares.

Coordinated flux density variability and VLBI monitoring is essential !

Krichbaum et al. 2001

Component Ejection Times and Outbursts

Id.	Ejection Time	Gamma Flare Time of Max	Onset of Flare (mm-radio)		
	[]				
C6	1980.0 ± 0.3		1980.6		
C7	1982.4 ± 0.4		1982.3		
C8	1984.6 ± 0.2		1984.2		
C9	1988.0 ± 0.2		1987.8		
C10	1988.3 ± 0.5		1988.0		
C11	1989.8 ± 0.3		1990.3		
C12	1991.0 ± 0.2	1991.47	1990.9		
C13	1993.0 ± 0.2	1993.00	1993.1		
		1993.86			
C14	1994.8 ± 0.2	1994.88	1994.3		
C15	1995.4 ± 0.4				
C16	1995.8 ± 0.2	1996.08	1995.8		
C17	1996.0 ± 0.3				
C18	1997.0 ± 0.2	1997.02	1996.8		

In 3C273 Gamma – ray flares, mm – flares and times of VLBI component ejections correlate.

Gamma – rays escape from the VLBI jet at about 1000-2000 Schwarzschild radii !

$$t_0^{
m VLBI} - t_0^{
m mm} = 0.1 \pm 0.2 \ t_0^{\gamma} - t_0^{
m mm} = 0.3 \pm 0.3$$

This suggests:

$$t_0^{
m mm} < t_0^{
m VLBI} \le t_0^\gamma$$

Krichbaum et al. 2001

for $\beta_{app} \approx 4$ near core \Rightarrow and r_{γ} the separation at $r(\tau_{\gamma\gamma} = 1)$ $r_{\gamma} \leq 0.1 \text{ mas} = 6 \cdot 10^{17} \text{ cm} = 2000 R_s$

Are γ -ray detected blazars faster ?

apparently yes !

22/43 GHz VLBA: Jorstad et al. 2001

FIG. 10.—Histogram of the brightest component speed in EGRET-detected and non-EGRET-detected sources for our representative flux density-limited sample.

2cm survey: Kellermann et al. 2004

 $\beta_{app} = 8.0 \pm 1.6$ for 20 sources detected by EGRET $\beta_{app} = 3.9 \pm 1.1$ for 51 sources not EGRET detected but: relative importance of SSC vs. EIC component depend on core separation and jet speed. Assuming constant jet energy, a high γ shifts the radiation zone to larger core-separations, causing reduced SSC flux.

higher X – ray flux for jets with lower Lorentz-factors !

Katarzynski & Ghisellini, 2007

application to broad-band flare of 3C454.3 in April 2005 suggests low jet $\Gamma = 6$. Gamma-ray emission in AGN originates from the base of relativistic jets, and is therefore Doppler-beamed and highly variable in intensity and spectral shape.

Main Mechanism:Inverse Compton scattering with synchrotron electronsorigin of seed photons controversial (SSC, ERC, RSC)better understanding of physical conditions and emission
mechanisms needed (δ , γ_e , B, n_e , ep or e⁻e⁺, R, ?)

VLBI, and in particular mm-VLBI can provide:

- morphology from pc down to sub-pc scales (>0.04 mas, few 10-1000 R_s)
- stringent limits to sizes (brightness temperature, energy density, magnetic field)
- shape and structure of jet (opening angle, bending, stratification, shocks)
- via monitoring: kinematics (β , γ) and geometry (δ , θ) (radial dependence of δ ?)
- after outbursts: detection of moving jet components in very early evolutionary stages (complemented by multi-frequency flux monitoring)
- in combination with cm-VLBI spectral properties of for core & jet components (v_m , B)

Scheduling and logistical constraints

EVN: 3 sessions per year, mainly 18/21cm, 5/6cm, 1.3cm once per year
 1.3cm/7mm seldomly because of low proposal pressure, data rates ≤ 1024 Mbit/s
 eEVN: several sessions/yr, 2 week response, only 18 or 6 cm,
 6 stations (Wb, Jb, Cm, On, Mv, Tr), Eb coming end 2007, data rates ≤ 256 Mbit/s

<u>VLBA:</u> flexible time allocation, rapid frequency switching, data rates \leq 512 Mbit/s

<u>VLBA+Effelsberg</u>: flexible, broad frequency coverage (1.4 – 86 GHz), ≤ 512 Mbit/s

<u>HSA:</u> up to 100 hrs per trimester, no 43 GHz in summer (is this reasonable?), \leq 512 Mbit/s

<u>Global VLBI:</u> same as EVN, 3 sessions per year, need increased proposal pressure to schedule 1.3cm/7mm more frequently, ≤ 512 Mbit/s

<u>GMVA:</u> 3mm, global (3xEVN + 2xIRAM +8xVLBA), 2 sessions per year (spring/autumn) of up to 10 days, depending on proposal pressure, ≤ 1024/512 Mbit/s in Europe/USA

VLBA+MPIfR+IRAM: flexible 3mm VLBI similar to VLBA+Eb, not yet established, need MOU !

