VLBI and Multiwavelength Studies of AGN: The French Connection

Andrei Lobanov MPIfR Bonn

- Production mechanism and primary location of γ-ray emission in AGN are both uncertain
- □ Multifrequency VLBI connections:
 - across the spectrum (mutual input for spectral fitting)
 - across the source (location of radio/ γ -ray emission)
- □ "Usual suspects" so far:
 - Radio continuum
 - Optical continuum and line flux
 - X-ray light curves, γ -ray events
 - Broad-band spectrum
- Why is it useful to connect to VLBI? This helps a lot to correlate short term, broad-band events:

$$N_{\rm ev} = \frac{D_{\rm A}}{\tau_{\rm ev} c} \sqrt{\Theta_{\rm GLAST} \Theta_{\rm VLBI}}$$

.

MAX-PLANCK-GESELLSCHAFT

		$M_{bh} = 5^{1}0^{\circ} M_{\odot}$
Event horizon:	1-2 R _g	10 ⁻⁵ рс
Ergosphere:	1-2 Rg	10⁻⁵ pc
Corona:	$10^{1} - 10^{2} R_{g}$	10 ⁻⁴ − 10 ⁻³ pc
Accretion disk:	$10^{1} - 10^{3} R_{g}$	10 ⁻⁴ – 10 ⁻² pc
Broad line region:	$10^2 - 10^5 R_g$	10 ⁻³ – 1 рс
Molecular torus:	> 10 ⁵ R _g	> 1 pc
Narrow line region:	> 10 ⁶ R _g	> 10 pc
Jet formation:	~ 10 ² R _g	~ 10⁻³ pc
Jet visible in the radio:	> 10 ³ R _g	> 10 ⁻² pc.

- Anatomy of extragalactic jets:
 - VLBI "cores"
 - collimation and acceleration scales ($\sim 10^3 R_g$)
 - regions dominated by strong shocks (~10 pc)
 - dissipation of shocks and development of instabilities (~100 pc)
 - kiloparsec-scale jets
- Relation between the jets and the nuclear environment in active galaxies:
 - jets transport excess angular momentum and energy
 - jets are connected to accretion disks, BLR, coronae? subrelativistic outflows?

□ Location at which jets become visible in radio is most likely ¹ determined solely by the τ =1 condition for synchrotron emisson ^{onen} point (Königl 1981).

(Königl 1981). D Nuclear flares can be described by relatively modest and smooth variations of particle density.

Magnetic fields are either tangled or organized on scales much smaller than the resolution limit.

Nuclear Flares

Sometimes can be detected only in VLBI data.

Monitoring the rising stage is essential for modelling.

Strong shocks are clearly present in jets on small scales (several decaparsecs) – from polarization and distribution of the synchrotron turnover frequency.

Jet-Disk Connection

Flares and ejections of new jet components in 3C345 may be related to the characterstic instability timescales in the disk at 20-200 Rg

□ BLRG 3C390.3: jet can produce a large fraction of non-thermal continuum

- Optical maxima correlate with the passages of relativistic plasma through S1
- □ An X-ray minimum is found close to the ejection epochs of C5 and C6

The jet in 3C390.3 may power a BLR associated with a subrelativistic outflow from the nucleus.

- Large amount of good work is already done for connecting VLBI to multifrequency observations
- □ Exploring VLBI-GLAST connection is really a must
- □ Most promising approaches:
 - statistical studies of VLBI/GLAST data on welldefined samples
 - "case studies" of flaring events in selected prominent objects
- Essentials of a "case study": 1) early trigger; 2) BB spectra at three selected epochs; 3) γ-ray, X-ray, optical and radio light curves; 4) dense VLBI monitoring.