GLAST and Low Frequency Radio Observations

Miguel F. Morales MKI & U. Washington June 21, Boston GLAST Workshop

Low Frequency Radio?

Physical connections between Gamma & Radio:

- Non-thermal (synchrotron, etc.)
- Shocks & plasma dynamics (via particle acceleration, and coherent or collective processes)
- Magnetic fields (Faraday rotation)

Technical advances:

- Ionospheric calibration
- Wide fields of view

Challenges 1: Foregrounds

- Faint point sources
- Smooth galactic emission
- Galactic radio recombination lines
- RFI
- Others!

Challenges 2: Ionosphere & Polarization

Mileura Widefield Array – Low Frequency Demonstrator

MWA-LFD Collaboration

MIT

C. Lonsdale, J. Hewitt, J. Bowman, R. Cappallo, B. Corey, S. Doeleman, H. Hinteregger, J. Kasper, D. Oberoi, J. Salah

Harvard/CfA L. Greenhill, M. Morales, B. Gaensler, A. Loeb, M. Zaldarriaga

> U. Melbourne R. Webster, C. Johnston, J. Stevens, S. Wyithe

> > ANU/Stromlo F. Briggs, J. Kocz

Curtin U. M. Lynch, D. Herne, B. Stansby

CSIRO/ATNF J. Bunton, C. Jackson, M. Storey

ALSO U. Tasmania, U. Sydney, W. Australian Gov't

Goals of MWA-LFD

- Key science drivers:
 - Epoch of Reionization
 - Heliospheric science FR & IPS
 - Radio transients

Mileura Station

Very radio quiet

Antenna

Mileura Widefield Array – Low Frequency Demonstrator

- 500 16 dipole antennas
- Radio quiet Mileura site
- Full cross-correlation of all 500 antennas
- Very wide 20°- 40° field of view
- Strict attention to systematics

LOFAR

- Two antenna types (30-80, 120–240 MHz)
- 45 stations (virtual antennas)

- 100 km baselines
- Very large collecting area

Long Wavelength Array

• Very low frequency (10-80 MHz)

- Co-located with the VLA
- Very long baselines (400 km)

MWA vs. LOFAR vs. LWA Cheat Sheet

	MWA	LOFAR	LWA
Frequency Coverage	80–300 MHz	30–80 MHz 120–240 MHz	10–88 MHz
Field of View (typical)	30° across	2° across	3° across
Collecting Area (typical)	8 x 10 ³ m ²	1.9 x 10 ⁵ m ²	6 x 10 ⁴ m ²
Angular resolution	4 arc min.	6 arc sec.	3 arc sec.
Bandwidth	32 MHz	32 MHz	32 MHz

Capabilities that compliment GLAST

- Transients
- Source monitoring
- Magnetic fields

ASM Analysis Diagram

ASM Transient Search

- 5 dimensional search over position, start time, duration, & dispersion measure
- Typical coverage of -0.3 str., - 2π str. at reduced sensitivity
- Minimum timescale of 8 sec. (initial, 1/2 sec. ultimate)
- Alerts will be formed for the community once system is fully developed (collaborators welcome)
- Roger Cappallo, lead

Monitoring with Tracking Lightcurve Analyzer

- We cannot save all of the ASM snapshots
- We can save light curves for thousands of interesting sources
 - 8 second resolution
 - -4 arc min. pixel
 - 32 MHz bandwidth
 - -32 kHz spectral resolution
 - Full Stokes polarization
- Justin Kasper, lead

Magnetic fields

- Through use of Faraday rotation, can map magnetic fields
- MWA & LOFAR should produce a full sky survey of rotation measure
- LOFAR & LWA can produce high resolution maps of particular sources
- MWA can produce magnetic tomography of solar events
- Bryan Gaensler, lead; Justin Kasper, solar lead;

Conclusion

Powerful opportunities for synergy between low frequency radio and GLAST observations