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Practical X/γ-ray spectroscopy

Most X-ray/γ-ray instruments have low or moderate 
spectral resolution, typically R=E/∆E

 
~ 3 – 20.  

Compare with typical spectral resolution in optical 
spectrographs, R

 
~ 2000 – 5000 (up to R

 
~70000 

possible).                                                      
However, band-passes of high-energy instruments 
extend over a factor ~30 – 100 in energy.              
Fermi LAT extends over a factor ~15000 In energy!       
Compare with typical values of only ~3 – 5 in the 
optical.
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Practical X/γ-ray spectroscopy
Differently from what happens in the optical, the 
continuum shape of the spectrum often provides 
important physical information (cf. lectures on 
radiative processes).

Therefore, unlike in the optical, most uses of high- 
energy spectra usually involve the simultaneous 
analysis of the entire spectrum rather than an attempt 
to measure individual line strengths.
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3C 273 Optical Spectrum (NTT/EMMI)

X-ray spectroscopy compared to 
optical spectroscopy 

X-ray spectroscopy compared to 
optical spectroscopy

R

 

= λ/∆λ

 

~ 2500-3000
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Gratings; R

 

~ 500
(e.g. Chandra)

CCDs; R

 

~ 40
(e.g XMM-Newton)

PSPC; R

 

~ 3 (e.g. ROSAT)

3C 273 Optical Spectrum with typical X-ray instruments

X-ray spectroscopy compared to 
optical spectroscopy 

X-ray spectroscopy compared to 
optical spectroscopy
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Practical X/γ-ray spectroscopy

The limited spectral resolution of the X-ray/γ-ray 
detectors means that there is a non-negligible 
probability that a photon of energy E

 
that enters 

the telescope is assigned an energy E¢≠
 

E

 
within a 

certain energy range around E. 

This can be expressed in terms of a function, 
R(E,E¢), that gives the probability that a photon of 
energy E

 
is assigned an energy E¢

 
in the detector.
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The Basic Problem (1)

Suppose we observe a source and detect D(E¢)
 photons per unit area, per unit time, per unit 

energy as a function of the measured energy E¢
 of the photons, how can we infer S(E), the number 

of photons per unit area, per unit time, per unit 
energy emitted by that source?

(Remember that the measured energy of each 
photon is not necessarily, and most likely is not, 
equal to the energy of the emitted photon!)
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Can we start with this…
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… and deduce this
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Can we start with any of these…
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… and deduce this
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Can we start 
with these…

and deduce 
this?
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The Basic Problem (1)

Suppose we observe a source and detect D(E¢)
 photons per unit area, per unit time, per unit 

energy as a function of the measured energy E¢
 of the photons, how can we infer S(E), the number 

of photons per unit area, per unit time, per unit 
energy emitted by that source?

The answer is that what we see is the convolution 
of the incident spectrum, S(E), and the instrument 
response, R(E ,E¢), describing the way the 
instrument responds to the incident photon.
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The Basic Problem (2)
In general, the incident and observed spectrum 
will be related by the integral relation:

• T
 

is the exposure time (e.g., in seconds)

• R(E¢,E)
 

is the probability of an incoming photon 
of energy E

 
being measured at an energy E¢, with
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photopeak

fluourescence
escape

photopeak

fluorescence

escape

A real example of R(E¢,E)
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The Basic Problem (2)
In general, the incident and observed spectrum 
will be related by the integral relation:

•A(E)
 

is the energy-dependent effective area of 
the telescope and detector system (e.g., in cm2).

• S(E)
 

is the source flux at the front of the 
telescope (e.g., in photons/cm2/s/keV)
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This is known as the remote sensing problem (or 
inverse problem) and arises in many areas of 
astronomy as well as, e.g., geophysics and medical 
imaging.

In mathematics the integral equation is known as a 
Fredholm equation of the first kind. 

The Inverse problem
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We know T
 

from the observation, and we assume 
we know A(E)

 
and R(E¢,E)

 
from the instrument 

calibration; we want to solve this integral equation 
for S(E). 

In reality we have discrete measurements over 
finite energy intervals. Let’s say we have divided 
the energy range of interest into M intervals (also 
known as bins). 

The Basic Problem (3)
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We then have the data measured in each bin, Di

 

, 
where i

 
runs from 1 to M.

Similarly, the emitted spectrum and effective area of 
the detector will now be Sj

 

and Aj

 

, respectively, 
where j

 
runs from 1 to N. The integral equation 

will then become

The Basic Problem (3)
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where, as mentioned, Di

 

is the number of photons 
observed in channel i , and Sj

 

is the flux in 
photons/cm2/s in energy bin j. 

We measure Di

 

and we want to find Sj.

The Basic Problem (3)
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We can rewrite the above using matrix notation as

The Basic Problem (3)

The vector D
 

is the product of the matrix R times 
the vectors A

 
and S, and the scalar T.

R is usually called the Redistribution Matrix Function 
(RMF), or if A

 
is absorbed into R, the Response 

Matrix (RSP).
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The Basic Problem (3)

The obvious tempting solution is to invert the 
above:

Where R-1 is the inverse, in matrix sense, of R.

This does not work! The Sj
 

derived in this way are 
very sensitive to slight changes in the data, Di

 

, and 
the response matrix, R. This is a great method for 
amplifying noise!
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The standard method of analyzing X-ray/γ-ray 
spectra is “forward-fitting”. This comprises the 
following steps…

Calculate a model spectrum.

Multiply the result by an instrumental response 
matrix.

Compare the result with the actual observed 
data by calculating some statistic.

Modify the model spectrum and repeat till the 
best value of the statistic is obtained.

Forward fitting
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Define 
Model

Calculate 
Model

Convolve with 
detector 
response

Compare to 
data

Change model 
parameters

Forward-fitting 
algorithm
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This only works if the model spectrum can be 
expressed in a reasonably small number of 
parameters so that the model can be varied in some 
sensible fashion.

The aim of the forward-fitting is then to obtain the 
best-fit and confidence ranges of these parameters.

The solution is NOT unique. Only some extra physical 
knowledge helps to get an answer.

Forward fitting
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- XSPEC - part of HEAsoft. General spectral fitting 
program with many models available.

- Sherpa - part of CIAO. Multi-dimensional fitting 
program which includes the XSPEC model library 
and can be used for spectral fitting.

- SPEX - from SRON in the Netherlands. Spectral 
fitting program specializing in collisional plasmas 
and high resolution spectroscopy.

- ISIS - from the MIT Chandra HETG group. Mainly 
intended for the analysis of grating data.

Spectral fitting programs
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Models are usually built up from individual 
components. These can be thought of as two basic 
types: additive (an emission component e.g. 
blackbody, line,…) or multiplicative (something which 
modifies the spectrum e.g. absorption).

Model = M = M1 ×
 

M2 × (A1 + A2 + M3 ×
 

A3 ) + A4

Models
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Basic additive (emission) models include :
• blackbody
• thermal bremsstrahlung
• power-law
• collisional plasma
• Gaussian or Lorentzian lines

Spectral packages have many more models available 
covering specialized topics such as accretion disks, 
comptonized plasmas, non-equilibrium ionization 
plasmas, multi-temperature collisional plasmas…

Additive Models
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Multiplicative models include :

• photoelectric absorption due to the neutral ISM
• photoelectric absorption due to ionized material
• high energy exponential roll-off.
• edge with 1/E3 roll-off.

There are also other types of model components 
(convolution, mixing) which are used like a 
multiplicative model but perform more complicated 
operations on the current model.

Multiplicative and other models
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χ2 - fit

Given the data, Di

 

, and the model values at the same 
bins as the data, Mi

 

, calculate:

where σ
i

 

= Mi
1/2 (expected error).
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χ2 - fit

However, having not yet fit the data, we do not know 
what is the expected value in channel i, Mi

 

, and 
hence we cannot calculate the expected error.

It is usual to take the observed error as a proxy to the 
expected one:

where σDi
 

= Di
1/2 (observed error).
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χ2 - fit

Notice that this error is “biased” (it is not a proper 
representation of the true error. More about bias in the 
Statistics lectures next week). For instance, if one 
channel happens to have fewer photons than 
expected, the error will also be smaller than expected, 
and that channel will have a strong influence in the 
value of X2. In the extreme, if a channel has 0 counts 
(not unthinkable in γ-ray spectra), X2 goes to infinity!
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If M is the correct model, the function X2 follows a χ2 

distribution with n
 

−
 

m degrees of freedom (dof), 
where n

 
is the number of data points (data channels) 

available, and m
 

is the number of parameters in the 
model.

In that case, the average of X2 is <X2> = n− m, and 
the standard deviation is σX2 =               .

In general the model M will be rejected if X2 is larger 
than n

 
−

 
m +

 
f

 
×

 
, where f

 
is determined by 

the confidence limit that one chooses.
)(2 mn −

)(2 mn −

χ2 - fit
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If the correct model is M ¢
 

instead of M, the expected 
value of X2 is no longer n− m, but n

 
−

 
m +

 
r, with:

wheref
 

and f ¢
 

are the probability distributions for the 
photons in models M and M ¢, respectively, and N

 
is 

the total number of photons in the spectrum. As can 
be seen, r

 
does not depend on the number of bins in 

the data, n.

χ2 - fit
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It can happen that one has chosen the wrong model to 
describe the data, but if n

 
is too large one still ends up 

accepting it because 

X2 = [n
 

−
 

m + r] < [n
 

−
 

m + f
 

× ].

If you use χ2 to fit your data, never oversample your 
spectra.

Notice also that χ2 assumes all measurements are 
independent, but if you oversample, channels are 
going to be correlated, and you are also going to 
overestimate the number of degrees of freedom.

)(2 mn −

χ2 - fit
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The fits will be dominated by bins that, due to 
statistical fluctuations, have small number of counts.

If you use χ2 to fit your data, you should rebin your 
spectra until you have enough counts in each 
channel so that the observed variance is 
approximately equal to the expected one (random 
fluctuations will not bias it).

Alternatively you may want not to assume errors are 
Gaussian (one of the assumptions behind χ2), given 
that they are in fact Poissonian!

χ2 - fit
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