GLAST Burst Monitor

Charles Meegan
Principal Investigator
NASA MSFC
Charles.Meegan@msfc.nasa.gov

Steve Elrod
Project Manager
NASA MSFC
Steve.Elrod@msfc.nasa.gov
The mission of the GLAST Burst Monitor (GBM) is to enhance the science return of the Gamma Ray Large Area Space Telescope (GLAST) mission in the study of gamma-ray bursts. The GBM will detect bursts over a large solid angle and will continually measure the spectra of bursts over a wide energy band and with high temporal resolution. It will also determine the directions to the bursts to allow optional repointing of the observatory.
GBM Management and Science Team

- Principal Investigator - Dr. Charles Meegan, MSFC
- Co-Principal Investigator - Dr. Giselher Lichti, MPE
- Project Manager - Stephen Elrod, MSFC
- Systems Engineer - Fred Berry, MSFC
- Co-Investigators (MSFC) - Dr. Jerry Fishman, Dr. Chryssa Kouveliotou
- Co-Investigators (MPE) - Dr. Robert Georgii, Dr. Andreas von Keinlin, Dr. Roland Diehl, Dr. Volker Schönfelder
- Co-Investigators (UAH) - Dr. William Paciesas, Dr. Geoff Pendleton, Dr. Robert Preece, Dr. Marc Kippen, Dr. Michael Briggs
GBM Near Term Schedule

GBM Program Milestones

- **Gamma-Ray Burst Monitor (GBM) Development**
- **Science Support for GBM Lifecycle**
- **Burst Monitor Instrument Management**
- **Instrument Systems Engineering**
- **Mission Assurance & Safety**
- **Flight Instrument**
- **Engineering Model (Deleted)**
- **Mechanical/Thermal Subsystem**
- **Instrument Harness Development**
- **Instrument Power Distributor**

Timeline

2001
- Oct: GLAST SRR - GBM Lite' SRR
- Nov: 2/1 GBM Delta MSFC SRR

2002
- Oct: GLAST Mission PDR - GBM Lite' PDR
- Nov: 8/1 GBM NAR

Key Dates
- **09/27-28/2000**

GLAST SRR
GBM Functional Block Diagram

Data Processing Unit (DPU)

Science data
Cmd/Resp
PPS
Ancillary Data
Power

Spacecraft Interface

HVPS
LVPS

NaI
PMT
BGO
PMT

Command

Power

Command

NaI
PMT

1 of 12

1 of 2

GLAST SRR
GBM Detector Concept Drawings

BGO Detector

NaI Detector
<table>
<thead>
<tr>
<th>Component</th>
<th>M[kg]</th>
<th>Number</th>
<th>M[kg]</th>
<th>%</th>
<th>kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal mass:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BGO</td>
<td>11.47</td>
<td>2</td>
<td>22.9</td>
<td>1%</td>
<td>0.2</td>
</tr>
<tr>
<td>NaI</td>
<td>0.59</td>
<td>12</td>
<td>7.1</td>
<td>1%</td>
<td>0.1</td>
</tr>
<tr>
<td>Al-Housing for 1 detector:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BGO</td>
<td>0.28</td>
<td>2</td>
<td>0.6</td>
<td>5%</td>
<td>0.0</td>
</tr>
<tr>
<td>NaI</td>
<td>0.03</td>
<td>12</td>
<td>0.4</td>
<td>5%</td>
<td>0.0</td>
</tr>
<tr>
<td>PMT (incl. Housing + Bleeder string):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M[kg]</td>
<td>0.86</td>
<td>16</td>
<td>13.8</td>
<td>15%</td>
<td>2.1</td>
</tr>
<tr>
<td>Mounting Flanges</td>
<td>M[kg]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.065</td>
<td>16</td>
<td>1.0</td>
<td>100%</td>
<td>1.0</td>
</tr>
<tr>
<td>DPU:</td>
<td>M[kg]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>2.0</td>
<td>100%</td>
<td>2.0</td>
</tr>
<tr>
<td>HVPS:</td>
<td>M[kg]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.35</td>
<td>1</td>
<td>3.4</td>
<td>10%</td>
<td>0.3</td>
</tr>
<tr>
<td>LVPS:</td>
<td>M[kg]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.27</td>
<td>2</td>
<td>4.5</td>
<td>10%</td>
<td>0.5</td>
</tr>
<tr>
<td>Thermal Hardware:</td>
<td>M[kg]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Heater, radiator)</td>
<td>0.13</td>
<td>16</td>
<td>2.1</td>
<td>50%</td>
<td>1.0</td>
</tr>
<tr>
<td>Contingency</td>
<td>M[kg]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.3</td>
<td></td>
<td>7.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total with Contingency.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>57.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocation</td>
<td>70.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Margin</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Power Estimate for GBM

Contingency Power Estimate

<table>
<thead>
<tr>
<th>Component</th>
<th>Watts</th>
<th>Number</th>
<th>Total Watts</th>
<th>%</th>
<th>Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMT (incl. Bleeder string & Preamp):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaI</td>
<td>0.3</td>
<td>12</td>
<td>3.6</td>
<td>25%</td>
<td>0.9</td>
</tr>
<tr>
<td>BGO</td>
<td>0.6</td>
<td>2</td>
<td>1.2</td>
<td>25%</td>
<td>0.3</td>
</tr>
<tr>
<td>DPU:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1</td>
<td>10.0</td>
<td>100%</td>
<td>10.0</td>
</tr>
<tr>
<td>HVPS:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>5.0</td>
<td>25%</td>
<td>1.3</td>
</tr>
<tr>
<td>LVPS:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>4.0</td>
<td>25%</td>
<td>1.0</td>
</tr>
<tr>
<td>Thermal Hardware:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Heater, radiator)</td>
<td>0.2</td>
<td>16</td>
<td>3.2</td>
<td>100%</td>
<td>3.2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>27.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contingency</td>
<td>16.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total with Contingency.</td>
<td>43.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocation</td>
<td>50.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Margin</td>
<td>6.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• GBM is using a standard MSFC Requirements, Verification and Compliance (RVC) database.

• Each requirement is numbered and categorized.

• Verification method and description captured on same page.

• Compliance data either referenced or stored electronically in database.

• Non-conformances summarized and referenced in database, and dispositioned by the GBM configuration control board.
GBM Sample Verification Sheet

GBM System Level Performance Requirements

<table>
<thead>
<tr>
<th>Title</th>
<th>Requirement</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Resolution</td>
<td>20% FWHM at 511 keV</td>
<td></td>
</tr>
<tr>
<td>On-board Burst Locations</td>
<td>20 degrees within 2 s</td>
<td>10 degrees within 1 s</td>
</tr>
<tr>
<td>Ground Burst Locations</td>
<td>5 degrees computed in 5 s</td>
<td>3 degrees computed in 1 s</td>
</tr>
<tr>
<td>Final Burst Locations</td>
<td>3 degrees computed in 1 day</td>
<td></td>
</tr>
<tr>
<td>Sensitivity (5σ)</td>
<td>0.5 photons cm⁻²s⁻¹</td>
<td>0.3 photons cm⁻²s⁻¹</td>
</tr>
<tr>
<td>Field of View</td>
<td>8 steradians</td>
<td>10 steradians</td>
</tr>
</tbody>
</table>
Effects of Requirements on Design

Science Requirements
- Large Energy Range
- Adequate Sensitivity
- Coarse Location
- Wide FOV
- Good Timing
- Burst Alerts
- Mass & Volume Constraints

Design Impacts
- NaI & BGO Detectors
 - Number & Size of Detectors
- Number & Placement of NaI Detectors
- DPU speed
- Data Types
- Telemetry Requirements
GBM Detector Mounting

NaI detectors:

The direction to any point in the sky within 120 degrees (TBC) of the +Z axis shall be <80 degrees (TBC) from the normal vectors of at least 3 unobstructed non-collinear NaI detectors, with 95% probability. The goal is 4 unobstructed non-collinear detectors with 100% probability. Solar panels are not considered to be an obstruction.

The angle between the normals of any two NaI detectors shall be >25 degrees (TBC).

BGO Detectors:

At least one unobstructed BGO detector must be visible from any point in the sky within 150 degrees (TBC) of the +Z axis, with 95% probability. The goal is 100% probability over all directions. Solar panels are not considered to be an obstruction.

The axis of symmetry of the BGO detectors should be perpendicular to the Z axis.
<table>
<thead>
<tr>
<th>Title</th>
<th>Requirement</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective Area for Locations</td>
<td>>110 cm² at 122 keV, on axis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>90 cm², 40 to 400 keV, on axis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>45% of on axis at 60 degrees</td>
<td></td>
</tr>
<tr>
<td>Effective Area for Spectra – low E</td>
<td>>100 cm² at 14 kev, on axis</td>
<td>> 50 cm² at 6 keV, on axis</td>
</tr>
<tr>
<td></td>
<td>>40 cm² at 14 keV, up to 60°</td>
<td>> 15 cm² at 6 keV, up to 60°</td>
</tr>
<tr>
<td>Effective Area for Spectra – high E</td>
<td>>80 cm², at 1.8 Mev, up to 90°</td>
<td></td>
</tr>
<tr>
<td>Spectral Resolution</td>
<td><35 % FWHM at 14 keV</td>
<td>< 22% HWHM at 6 keV</td>
</tr>
<tr>
<td></td>
<td><20 % FWHM at 60 keV</td>
<td></td>
</tr>
<tr>
<td></td>
<td><11 % FWHM at 662 keV</td>
<td></td>
</tr>
<tr>
<td></td>
<td><7 % FWHM at 1.8 MeV</td>
<td></td>
</tr>
<tr>
<td>Gain Stability</td>
<td>2% over 1.5 hours</td>
<td></td>
</tr>
</tbody>
</table>
GBM DPU Performance Requirements

<table>
<thead>
<tr>
<th>Title</th>
<th>Requirement</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Rate performance</td>
<td>10^5 cps per detector, 6×10^5 cps total</td>
<td></td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>200:1</td>
<td>300:1</td>
</tr>
<tr>
<td>Linearity</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>Automatic Gain Control</td>
<td>Monitor 511 keV line and adjust HV</td>
<td></td>
</tr>
<tr>
<td>Burst Trigger</td>
<td>16 ms integrations</td>
<td></td>
</tr>
<tr>
<td>CTIME data</td>
<td>8 channels, 0.512 s</td>
<td>Adjustable to 0.128 s</td>
</tr>
<tr>
<td>CSPEC data</td>
<td>128 channels, 8.192 s</td>
<td>Adj. to 2.048 s</td>
</tr>
<tr>
<td>TTE data</td>
<td>250,000 events pre-trigger</td>
<td>500,000 events pre-trigger</td>
</tr>
<tr>
<td>Housekeeping data</td>
<td></td>
<td>Deadtime counters</td>
</tr>
</tbody>
</table>
GBM Requirements Issues

- System linearity and stability need further study
- **DPU redundancy/cost trades**
- **DPU/Spacecraft Interface**
 - Small increase in telemetry buffer can achieve goal of science enhancement
 - Max Spacecraft Bus Rate affects TTE Buffer
- **Trigger alerts need to be coordinated with LAT team**
- **Requirements levied on GLAST project**
 - Observatory mass model
 - Spacecraft simulator
 - TBD spacecraft level radioactive source calibration
- **Detector Mounting** – Thermal, FOV, Mechanical
GBM Ground Support System (pre-launch)

- **Purpose**
 - System test & calibration
 - S/C integration & test

- **Functions**
 - Receive & store data
 - Monitor detector rates, housekeeping, status
 - Display & analyze detector spectra
 - Generate & transmit instrument commands
 - Simulate detector response

- **Capabilities**
 - Process/store >95% of real-time packets
 - Transportability
 - Critical custom components redundant
 - DPU interface
 - GLAST S/C interface
 - S/C simulator required
GBM Ground Support System (post-launch)

Instrument Operations Center

• **Purpose**
 – Instrument operations
 – Data archival
 – Primary data analysis

• **Functions**
 – Process data, level 1 → 2
 – Maintain flight S/W
 – Monitor detector calibration
 – Monitor detector rates, housekeeping, status
 – Locate GRBs
 – Deconvolve GRB spectra
 • Mass Model required

• **Functions (continued)**
 – Generate/transmit instrument commands
 – Compute GRB peak flux, fluence, duration
 – Produce and deliver high-level data
 – Interface to GLAST MOC/SSC
 – Autonomous GRB location software for MOC