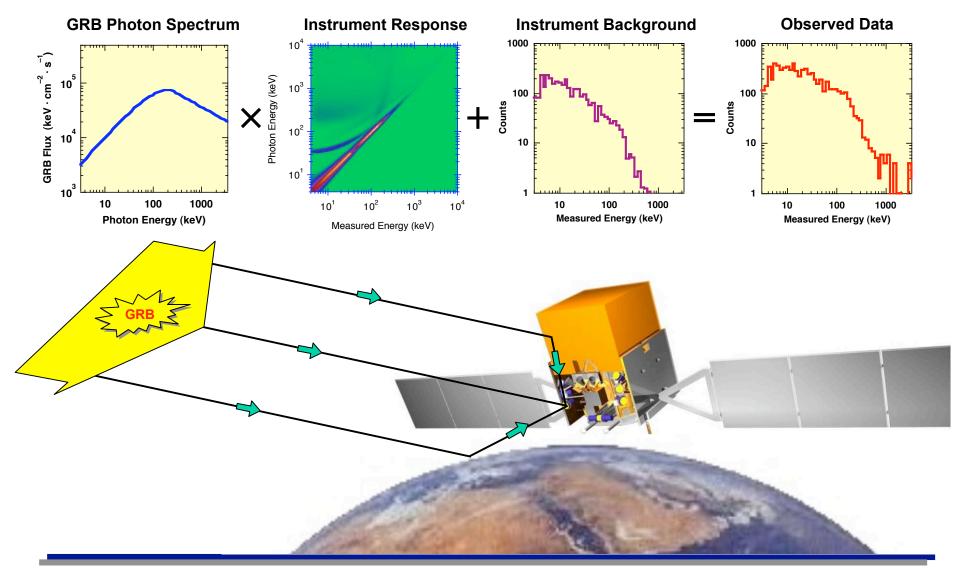
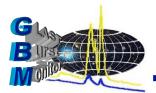

GBM Simulation and Instrument Response


R. Marc Kippen


Space and Atmospheric Sciences Group Los Alamos National Laboratory

GBM Detector / Instrument Response

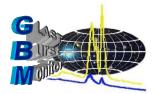
GBM BWG Review, 31 August 2004

Simulation and Detector Response Software

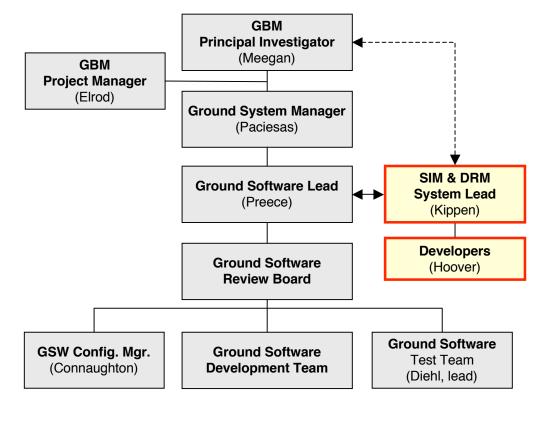
- Definition: Multi-purpose software suite that computes the physical and instrumental response of the GBM instrument system
 - Primary purpose: generate detector response functions critical to the analysis of flight science data
 - λ Other uses: instrument design; interpretation of calibrations; design of flight and ground analysis algorithms & s/w
- **Technique:** Numerical simulation Monte Carlo radiation transport
 - **λ** Verified through, and incorporating results from experimental calibration

Major Components

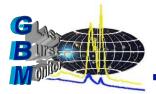
- Mass model (geometry + composition)
- Incident particle distributions
- Radiation transport physics
- Instrumental/calibration effects
- DRM database
- DRM synthesizer/generator

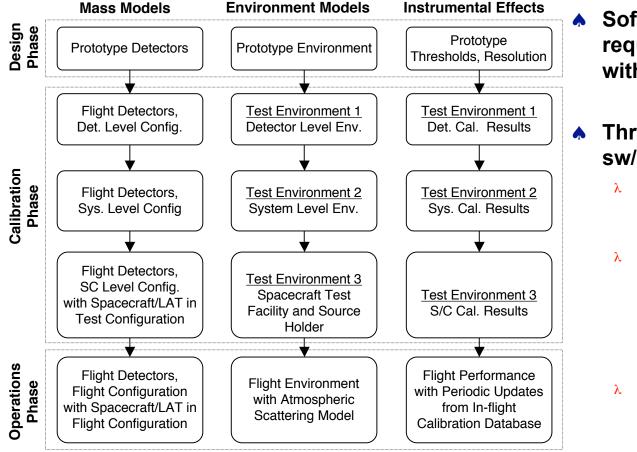

Key Functional Specifications

GBM SIM/DRM S/W Functional Specs


GBM-SPEC-1025 (reviewed at GSW PDR) **GBM IODA S/W Functional Specs** GBM-SPEC-1031 (reviewed at GSW PDR)

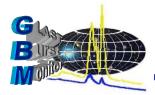
- Complete and accurate interaction physics (included in core simulation package — GEANT4)
- Accurate mass models, environment models, and instrument models (but not overly complex)
- Later stages of development require S/C models (including LAT model)


- Verification through comparison with experimental data
- Final DRMs must include contribution from atmospheric scattering (+direct detector and S/C scattered response)
- GLAST S/C will have rapid slew capability — different DRMs are required whenever aspect changes by > 1°
- DRM generation s/w is part of GBM IODA s/w and subject to the same requirements for standards, configuration control, etc.


Development Organization

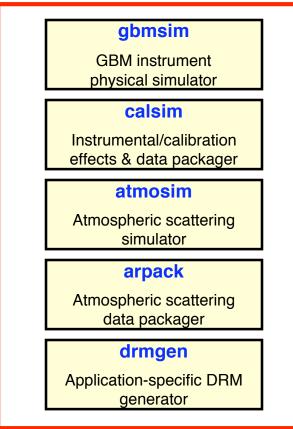
- SIM/DRM software designed and developed at LANL in collaboration with GBM PI and GSW lead
- Development process falls under GSW Development Plan (GBM-PLAN-1023)
- Final products (s/w and data) delivered to GBM PI at NSSTC (also available to MPE and other interested parties)

Phased Software/Model Development

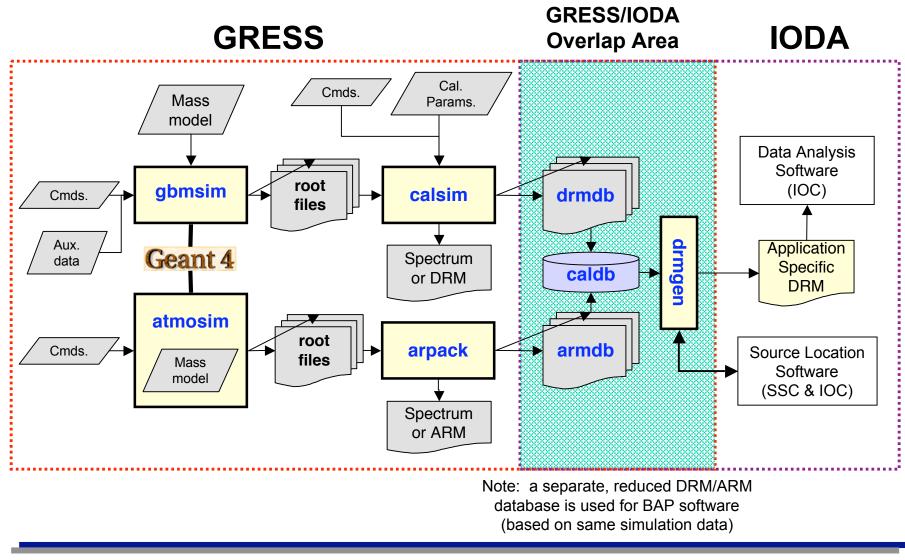

Software and models require cross-validation with calibration data

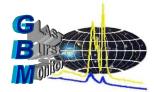
Three phases of SIM/DRM sw/model development

λ Design


 Simulate prototype detectors

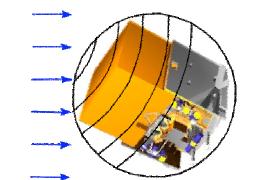
- Calibration
 - Simulate three levels of calibration/test
 - λ Detector level
 - λ GBM system level
 - λ On-spacecraft level
- Operation
 - In-flight configuration appropriate for analysis of science data
 - DRM generation

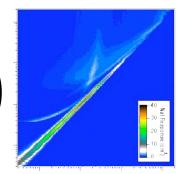

Implementation: GBM REsponse Simulation System

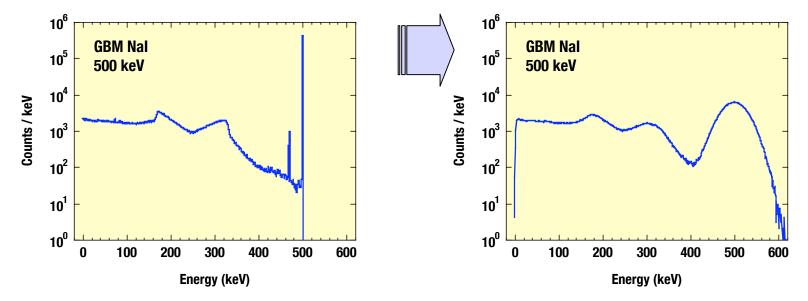

GRESS

- Integrated package that will encompass all GBM instrument response software and data needs
- Configuration controlled as a single deliverable package with component software/data modules
- All packages (and their dependencies) use GNU compilers — mainly g++
- All data files have headers with detailed version & job tracking data
- Final phase package will be a subset of the GBM IODA software, cf. GBM-SPEC-1036 (GSW Arch. Design)

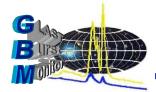
Implementation: GBM REsponse Simulation System

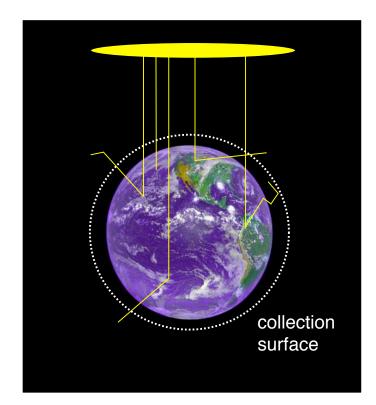



How – *Direct* Instrument Response

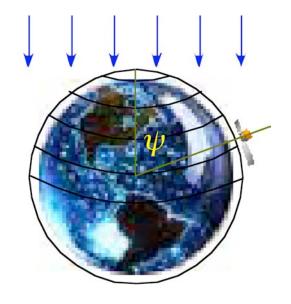

gbmsim — Raw "physical" data

calsim — Packaged, instrument-like data

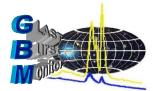

$$\Re_{\mathrm{D}}(\vartheta,\varphi,E_{\gamma},E_{m})$$


Simulations and Response / R. M. Kippen (LANL)

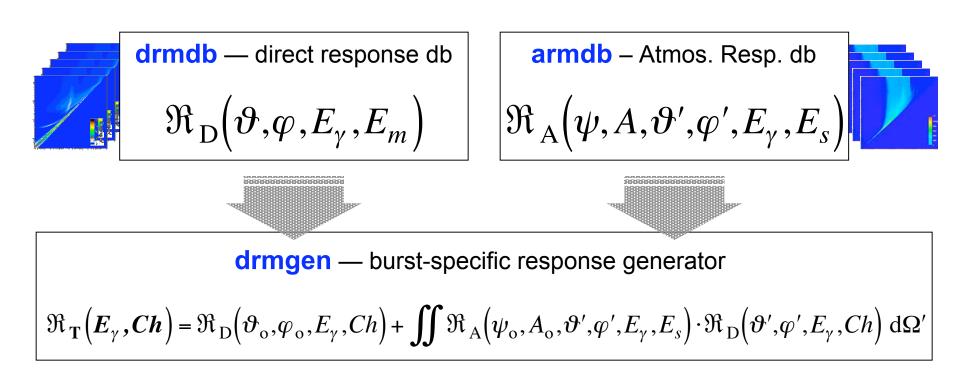
GBM BWG Review, 31 August 2004


How – Atmospheric Scattered Response

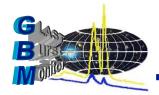
atmosim — Raw "physical" data



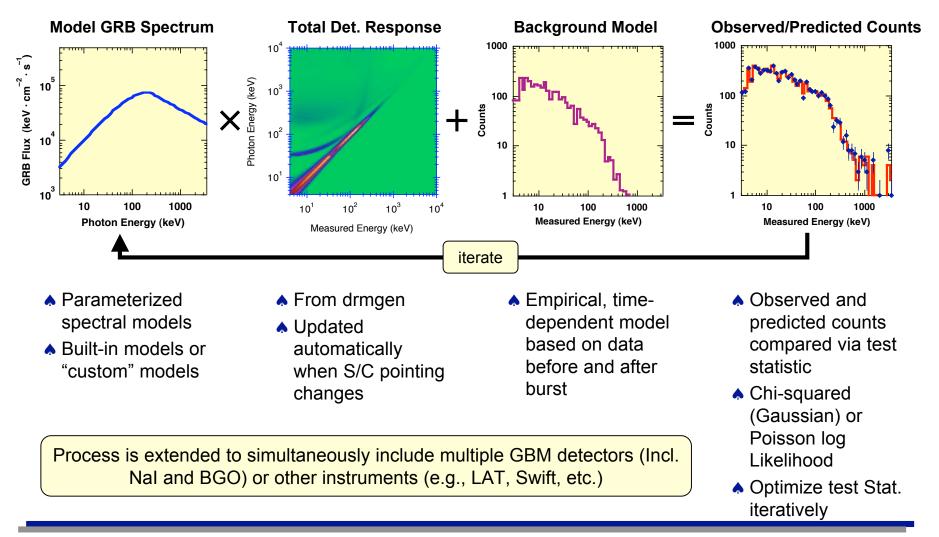
NRLMSISE-2000 atmospheric model used to create concentric shell mass model

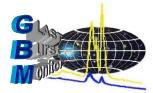

arpack — Packaged data matrix

 $\Re_{A}(\psi, A, \vartheta', \varphi', E_{\gamma}, E_{s})$

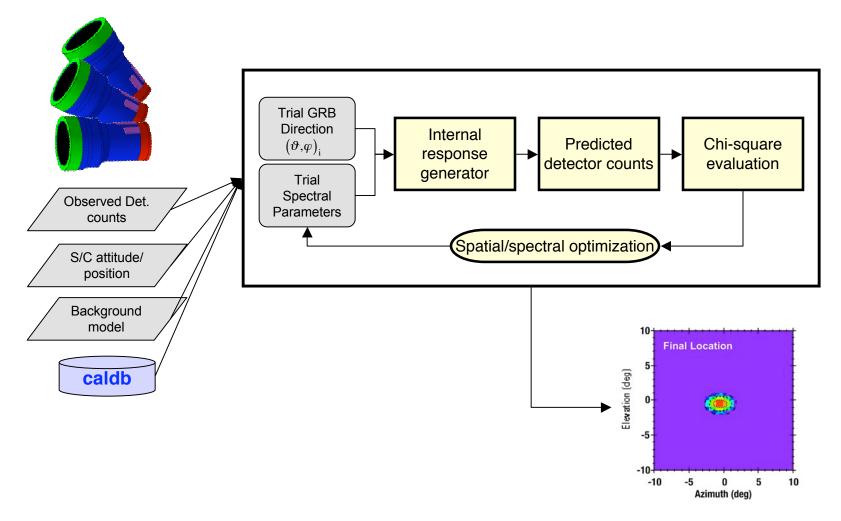


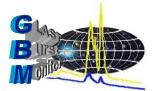
How — Putting it all Together


Data Analysis – spectral fitting and localization

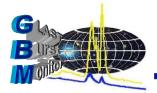

$$C_{i} = \int f(E_{\gamma}) \cdot \Re_{\mathrm{T}}(E_{\gamma}, Ch) \, \mathrm{d}E_{\gamma}$$

How — Response used for Spectral Analysis


rmfit/xspec — spectral model "hypothesis testing"

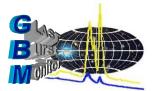


How — Response used for Localization


Simultaneous spatial/spectral model "hypothesis testing"

▲ SIM/DRM development is affected by:

- Delivery of GBM detector design data/drawings (received June 2004, three months behind original schedule)
- Delivery of GLAST spacecraft design data/drawings (expected July 2004, three months behind original schedule, initial delivery August 2004)
- **λ** Schedule of GBM calibrations
 - Required to verify SIM/DRM s/w and models
 - Detector level (MPE), system level (NSSTC), spacecraft level (Spectrum) all slipped due to launch slip.
- Development status:
 - Preliminary versions of GRESS software complete (several months ahead of schedule)
 - **λ** Detector model development nearing completion (3 months behind)
 - **λ** Spacecraft model development starting (3 months behind)
 - λ Result: able to meet required delivery schedule



Stable since GBM System CDR June 2004

Milestone	Date [†]	Driver	Date
SIM/DRM Delivery 1	Nov. 1, 2004	Verify s/w & models with GBM detector-level calibrations	Feb. 2005 –
(Detlevel s/w & models)	(∆+4 mo)		Mar. 2005
SIM/DRM Delivery 2	Jun. 15, 2005	Verify s/w & models with GBM system-level calibrations	Jul. 2005 –
(Systlevel s/w & models)	(∆+3 mo)		Sep. 2005
SIM/DRM Delivery 2.1	Nov. 1, 2005	Support IODA Release 2.2 & 2.3, and Data Challenge 3	Nov. 1, 2005;
(preliminary CALDB/DRM)	(new)		Dec. 1, 2005
SIM/DRM Delivery 3 (S/C-level s/w & models)	Jan. 2, 2006 (∆+3 mo)	Verify s/w & models with GBM spacecraft-level source survey	Feb. 2006
SIM/DRM Delivery 4	Apr. 14, 2006	Support IODA Release 3	Sept. 1, 2005
(Ops. phase s/w & models)	(no change)	(launch-ready software)	
SIM/DRM Delivery 5 (Final DRM/CALDB database)	Nov. 1, 2006 (no change)	Support Phase E science/Ops.	Post-launch

* All deliveries from LANL to NSSTC

[†] Schedule changes from ground s/w CDR reflect changes in the GBM calibration schedule (affected by launch slip)

SIM/DRM Schedule

Та	ask Name	2001		2002			2003			2004			200	05	2006				2007				
А.	GBM Project Milestones				PI	DR					F 7			PER ▼		PSR					aunch	Phas	se
в.	GBM IO&DA S/W Milestones			TIM					PDR														
C.	GBM Calibration Milestones			TIM	Rqm	its.		P	lan V					Det.	Cal.\$	iys. Cal.	S/0 ▽1	Cal.					
D.	SIM/DRM S/W Milestones			™			C	De .0	PDR				Del.1		D2	2.1 Y	D3	D4	D	15			
1.	Functional Specifications			7																			
2.	SIM Input to IODA S/W Dev. Plan						∇	1					++						-				t
3.	Selection of Core SIM package					∇		+															t
4.						-																+	+
	a. Model Dev.							+											-				t
	b. Code Dev.							+											-				t
	c. Runs/Analysis							+					11									+	+
5.	Calibration Phase Dev.																					+	+
	a. Det. Model Dev.										7		•	∇	V	∇	†						+
	b. Spacecraft/LAT Model Dev.											, ,	7				4						+
	c. Code Dev.										1		•	∇	V	∇	4						+
	d. Production Runs												V		∇		V	▼				-	t
	e. Analysis															∇		7				-	T
6.	Operations Phase Dev.																		1				T
	a. Det. Model Dev.										1						$\overline{\nabla}$	†				1	T
	b. Spacecraft/LAT Model Dev.										1						$\mathbf{\nabla}$	i	1				T
	c. Code Dev. (Incl. atmosim)							1			1			1			Ļ	V					T
	d. Production runs										1					∇	ļ	ļ,		7			T
	e. Analysis/modifications												_				Ŷ			-	-	-	₽
Е.	Key External Inputs																						
1.	GBM Detector math models										1	\bigtriangledown	V										
2.	S/C math models										V			7									T
3.	LAT math models										$\mathbf{\nabla}$			†			1						