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1. Introduction

To assist the design effort for the GBM burst trigger, I am undertaking a number of

trade studies. This memo describes the results; it will evolve as I add additional studies.

Currently the memo addresses time binning and the choice of the trigger energy bands ∆E.

The underlying assumption is that the GBM will use a rate trigger: a detector will trigger

when the number of counts in a time bin of duration ∆t and in an apparent energy range

∆E exceeds the expected number of background counts by a preset number of multiples of

the fluctuation scale, the square root of the number of expected background counts. For the

array of NaI detectors a trigger occurs when the significance in two or more detectors exceeds

a threshold, here assumed to be σ0 = 5.5. For the BGO detectors I assume a significance in

one detector of σ0 = 8 is required.

2. Time Binning

The time binning issues are what values of ∆t should be used, and what registration of

consecutive time bins should be used.

BATSE used ∆t=64 ms, 256 ms, and 1024 ms, i.e., ∆t spaced by factors of ×4. We

realize that both shorter and longer values of ∆t would have probed different burst popu-

lations at the detection threshold. The GBM can use a minimum time of ∆t=16 ms, and

we would like to try ∆t up to ∼16 s. The question is whether the values of ∆t should be

spaced by factors of ×2 (i.e., ∆t=16 ms, 32 ms, 64 ms...) or of ×4 (i.e., ∆t=16 ms, 64 ms,

256 ms...).

BATSE used time bins that did not overlap. Thus the ∆t=1024 ms bins were accumu-

lated every 1024 ms. A burst would have triggered BATSE at a lower peak flux if the peak

fell mostly in one 1024 ms bin than if the peak was split between two bins. The opposite

extreme would be to use every possible time bin; thus the GBM would test bins staggered

by only 16 ms. This would involve a great deal of computation, and would most likely not

gain much sensitivity for larger values of ∆t. The probability of a large fluctuation increases

as the number of bins tested increases, but the increase is not linear because the bins are not

independent. An improvement on the non-overlapping time bins would be to accumulate
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bins (beyond the shortest ∆t) every ∆t/2. Thus the ∆t=1024 ms bins would be accumulated

every 512 ms.

I tested 6 different triggers: two ∆t spacings, and three time bin registrations. I label the

non-overlapping bins “FULL” (for full step), bins every half step “HALF,” and all possible

bins “ALL.” I append a 2 or 4 if ∆t is spaced by ×2 or ×4. Thus the most tests will occur

for ALL2, and the least for FULL4. Over 16.384 s with ∆t between 16 ms and 16.384 s,

11264 time bins will be tested for ALL2, but only 6144 for ALL4. FULL2 results in 2047

bins, and 1365 bins for FULL4. HALF2 results in 3070 bins and HALF4 in 1706. Note

that the computation time may not scale linearly with the number of bins tested; for the

trigger algorithm I developed, the counts-in-a-bin are calculated for ∆t spaced by factors of

×2 whether or not a particular ∆t is tested.

To test the sensitivity of these 6 different triggers, I applied each trigger to the 50–

300 keV lightcurves with 64 ms resolution of the 25 BATSE bursts (for which there are

data) with the largest peak fluxes integrated over 64 ms. In each case I chose 10 different

starting times randomly distributed over 16.384 s, thus sampling different registrations of

the burst relative to the grid of time bins. If the jth bin has Cj counts where Bj are

expected, the trigger significance for that bin is (Cj − Bj)/
√

Bj. The maximum trigger

significance for a burst is proportional to how much fainter the burst could have been and

still would have been detected. Ratios of the maximum significances for different triggers

compares the relative sensitivities of these triggers. I have chosen to calculate ratios that

are greater than or equal to 1, thus showing the factor by which peak flux threshold for

the less sensitive trigger is greater than for the more sensitive trigger. The figure shows the

cumulative distribution of these ratios—there are 250 samples (25 bursts with 10 beginning

times for each burst). As can be seen, HALF2 is the most sensitive trigger after ALL2,

while FULL4 is the least sensitive trigger, as expected. As a quantitative measure of the

sensitivities of the different triggers, I consider the relative sensitivity at 0.1, i.e., for 10%

of the cases the relative sensitivity will be greater than this value: ALL4—1.147; HALF2—

1.108; HALF4—1.236; FULL2—1.271; and FULL4—1.345. HALF2 may be a particularly

effective trigger.

While testing more time bins increases the detection sensitivity, it also increases the

probability of a spurious trigger. If more time bins are tested and the overall probability of

a spurious trigger is to remain the same, then the trigger threshold needs to be set higher,

reducing the detection sensitivity. Since overlapping bins are tested by many of these triggers,

the probability of a spurious trigger is not proportional to the number of bins; the bins are

not independent. Thus the question is whether the increase in sensitivity for more bins is

balanced by the greater probability of a spurious trigger.
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Fig. 1.— Cumulative distribution of the sensitivity for different triggers relative to ALL2,

the most sensitive trigger. The curves are: solid—ALL4; dashed—HALF2; dot-dashed—

HALF4; dots-dashed—FULL2; and long dashed—FULL4. The results are for 25 strong

BATSE bursts, each with 10 different beginning times.
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To determine the spurious trigger rate for the different triggers, I ran the triggers over

640 s (10,000 bins of 0.064 s each) of simulated background. The number of counts in each

bin was drawn from a Poisson distribution with a specified mean equal to the background

rate. For each interval I recorded the maximum significance for each trigger on any timescale;

since there was not bursts in these simulations, this significance results from a fluctuation.

Figures 2–5 show the cumulative distribution for 1000 intervals for background rates of 250

and 1000 counts per 64 ms bin. As can be seen, the more sensitive triggers do have higher

maximum significances for simulated background. For the same fluctuation probability the

threshold significance needs to be raised by less than ∼ 5%.

3. Dependence of Sensitivity on Ep

Marc Kippen has provided his code that calculates the total and background counts

accumulated in each detector over a specified energy band ∆E and time range ∆t for a burst

with a given spectrum and position relative to the spacecraft. Thus for the ith detector,

the code provides Ci total and Bi background counts over ∆t between E1 and E2 for a

burst photon flux NB. For the GRB spectral shape the normalization nK is the photon flux

integrated between 50 and 300 keV. The significance is

σ =
∆t

∫ E2

E1
dE ′Ri(E

′ |E, Ω)NB(E)√
Bi

=
Ci −Bi√

Bi

(1)

where Ri(E
′ |E, Ω) is the response function linking the count rate in the ith detector at an

apparent energy E ′ with the actual photon energy E from a source at location Ω.

I advocate using the threshold peak flux FT integrated between 1 and 1000 keV as the

sensitivity. The corresponding photon flux is NT = mNB; the spectral shape is the same,

but the fluxes differ by a normalizing factor. Assume that a trigger significance of σ0 is

required. Then

FT =

∫ 1000

1

dENT (E) , (2)

σ0 =
∆t

∫ E2

E1
dE ′Ri(E

′ |E, Ω)NT (E)√
Bi

, (3)

and therefore FT =

∫ 1000

1
dENT (E)× σ0

√
Bi

∆t
∫ E2

E1
dE ′Ri(E ′ |E, Ω)NT (E)

, (4)

where I have multiplied eqn. (2) by the left side of eqn. (3) divided by the right side (i.e.,
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Fig. 2.— Cumulative distribution of maximum significance in a 640 s interval of simulated

background. The background rate was 250 counts per 64 ms bin, and 1000 intervals were

run. The curves are: upper solid curve—ALL2; dashed—ALL4; dot-dashed—FULL2; dots-

dashed—FULL4; long-dashed—HALF2; and lower solid curve—HALF4.
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Fig. 3.— Same as Figure 2 (background rate of 250 counts per 64 ms bin), but showing the

high significance tail.
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Fig. 4.— Same as Figure 2, but for 1000 counts per 64 ms bin.
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Fig. 5.— Same as Figure 4 (background rate of 1000 counts per 64 ms bin), but showing

the high significance tail.
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by 1). But since

Ci −Bi = ∆t

∫ E2

E1

dE ′Ri(E
′ |E, Ω)NB(E) , (5)

then FT =

∫ 1000

1
dENT (E)× σ0

√
Bi

m(Ci −Bi)
, (6)

where m is the ratio between NT and NB. In deriving eqn. (6) I used the numerators in

eqn. (1) and the scaling between NT and NB. But since

∫ 300

50

dENT (E) = m

∫ 300

50

dENB(E) = mnK , (7)

therefore FT =

[
nk

∫ 1000

1
dENT (E)∫ 300

50
dENT (E)

] [
σ0

√
Bi

Ci −Bi

]
. (8)

Note that integrals over NT are in both the numerator and denominator, and thus the actual

normalization of NT is never calculated. The shape of the spectrum is necessary for both

NT and the calculation of Ci; I parameterize the burst spectrum with the GRB function.

The source direction affects the calculation of Ci; the detector with the second largest value

of Ci (resulting in the second largest value of σ) should be chosen.

First I evaluate the spatial sensitivity of the GBM NaI array; eventually this should be

done more systematically. Figures 6 and 7 show the sensitivity as a function of zenith and

azimuth. As can be seen the sensitivity varies away from the normal to the LAT, but within

the LAT’s FOV the variations are ∼ 20%.

Next I considered the choice of ∆E—the energy bands over which the counts will accu-

mulated. The channel boundaries can be: 5, 10, 20, 50, 100, 300, 500, 1000 and > 1000 keV.

For these studies I’ve avoided the highest boundary since it is not well defined. To compare

GBM results with BATSE we would like to use ∆E =50–300 keV. I use four sets of spectral

indices: α = −1, β = −2; α = −1/2, β = −3; α = 0, β = −2; and α = −1, β = −25. To get

significant flux in the LAT even for strong bursts, the spectrum should be hard (Ep ∼ 1 MeV)

with β ∼ −2. Bursts are often hard at the beginning of bursts with α ∼ 0; thus the third

set of spectral indices is particularly interesting. The fourth set corresponds to a spectrum

with no high energy tail.

In general I find that starting ∆E at 5 keV or ending at 1000 keV maximizes the

sensitivity. For example ∆E=5–100 keV is generally more sensitive than ∆E=10–100 keV.

Starting at a given low energy boundary, the trigger is more sensitive for a higher high energy

boundary; for example ∆E=5–100 keV is more sensitive than ∆E=5–50 keV. Figures 8–11

show the curves for ∆E ending at 1000 keV. Starting the energy band at 5 keV provides the
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Fig. 6.— The sensitivity of the GBM NaI array as a function of zenith (here labelled as

elevation) angle (angle from the normal to the LAT). The curves are for different azimuth

angles: solid—0◦; dashed—30◦; dot-dashed—60◦; and dots-dashed—90◦. The spectral model

is α = −1, β = −2, and E = 100 keV; σ0 = 5.5 is assumed. The calculation is for ∆E = 10–

100 keV and 50–300 keV, and ∆t = 1 s. The threshold flux is the 1–1000 keV peak flux (ph

s−1 cm−2).
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Fig. 7.— The sensitivity of the GBM NaI array as a function of azimuth angle; because of

the symmetry, only azimuths between 0◦ and 90◦ are shown. The curves are for different

zenith angles: lower solid—0◦; dashed—30◦; dot-dashed—60◦; dot-dot-dashed—90◦; and

upper solid—120◦. The spectral model is α = −1, β = −2, and E = 100 keV; σ0 = 5.5 is

assumed. The calculation is for ∆E = 10–100 keV and 50–300 keV, and ∆t = 1 s. The

threshold flux is the 1–1000 keV peak flux (ph s−1 cm−2).
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best low energy sensitivity, while starting at 50 or 100 keV provides the best high energy

sensitivity, although the results vary with spectral index. Ending ∆E at 300 keV has a

similar pattern. Figures 12–15 show the sensitivity curves for ∆E beginning at 5 keV. As

can be seen, including the entire energy band gives the greatest sensitivity in all cases.

Based on these results I advocate using ∆E=5–100, 50–300, and 100–1000 keV. This

may not be the optimum, but it includes ∆E=50–300 keV. Alternatively ∆E=5–1000 keV

may be used instead of 5–100 keV, and 100–>1000 can be used instead of 100-1000 keV. If

we do not require ∆E=50–300 keV, then ∆E=5–1000 and 50–1000 keV would do a good

job. Figures 16–19 compare two sets of ∆E for the different sets of spectral indices.

4. Triggering Off the BGO Detectors

Will triggering off the BGO detectors increase the GBM sensitivity? To answer this

question I assume the GBM will trigger off a single detector (as opposed to requiring two

NaI detectors trigger), but raise the trigger threshold to σ0 = 8. I use two BGO trigger bands:

∆E=0.15–1 MeV and 0.15–30 MeV. For comparison I include the sensitivity resulting from

triggering off two NaI detectors with ∆E=5–1000 keV and 50–300 keV. Figures 20–22 show

the results for: α = 0, β = −2; α = −1, β = −2; and α = −1, β = −5. As can be seen,

the BGO provides extra sensitivity only for α = 0, β = −2 above Ep=1 MeV. As I argued

above, the spectrum at the beginning of a burst often has α = 0, β = −2, and therefore the

BGO trigger will provide extra sensitivity to hard bursts that might have significant LAT

flux.
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Fig. 8.— The sensitivity of the GBM NaI array as a function of ∆E for α = −1 and β = −2.

For all curves ∆E ends at 1000 keV. The lower end is at 5 (solid curve), 10 (dashes), 20

(dot-dashes), 50 (dots-dashes) and 100 keV (long dashes). The calculation is σ0 = 5.5 and a

zenith angle of 0◦. The y-axis is the 1–1000 keV peak flux (ph s−1 cm−2), while the x-axis

is Ep in keV.
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Fig. 9.— The sensitivity of the GBM NaI array as a function of ∆E for α = −1/2 and

β = −3. For all curves ∆E ends at 1000 keV. The lower end is at 5 (solid curve), 10

(dashes), 20 (dot-dashes), 50 (dots-dashes) and 100 keV (long dashes). The calculation is

σ0 = 5.5 and a zenith angle of 0◦. The y-axis is the 1–1000 keV peak flux (ph s−1 cm−2),

while the x-axis is Ep in keV.
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Fig. 10.— The sensitivity of the GBM NaI array as a function of ∆E for α = 0 and β = −2.

For all curves ∆E ends at 1000 keV. The lower end is at 5 (solid curve), 10 (dashes), 20

(dot-dashes), 50 (dots-dashes) and 100 keV (long dashes). The calculation is σ0 = 5.5 and a

zenith angle of 0◦. The y-axis is the 1–1000 keV peak flux (ph s−1 cm−2), while the x-axis

is Ep in keV.
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Fig. 11.— The sensitivity of the GBM NaI array as a function of ∆E for α = −1 and

β = −25. For all curves ∆E ends at 1000 keV. The lower end is at 5 (solid curve), 10

(dashes), 20 (dot-dashes), 50 (dots-dashes) and 100 keV (long dashes). The calculation is

σ0 = 5.5 and a zenith angle of 0◦. The y-axis is the 1–1000 keV peak flux (ph s−1 cm−2),

while the x-axis is Ep in keV.
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Fig. 12.— The sensitivity of the GBM NaI array as a function of ∆E for α = −1 and

β = −2. For all curves ∆E begins at 5 keV. The upper end is at 50 (solid curve), 100

(dashes), 300 (dot-dashes), and 1000 keV (dots-dashes). The calculation is σ0 = 5.5 and a

zenith angle of 0◦. The y-axis is the 1–1000 keV peak flux (ph s−1 cm−2), while the x-axis

is Ep in keV.
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Fig. 13.— The sensitivity of the GBM NaI array as a function of ∆E for α = −1/2 and

β = −3. For all curves ∆E begins at 5 keV. The upper end is at 50 (solid curve), 100

(dashes), 300 (dot-dashes), and 1000 keV (dots-dashes). The calculation is σ0 = 5.5 and a

zenith angle of 0◦. The y-axis is the 1–1000 keV peak flux (ph s−1 cm−2), while the x-axis

is Ep in keV.
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Fig. 14.— The sensitivity of the GBM NaI array as a function of ∆E for α = 0 and β = −2.

For all curves ∆E begins at 5 keV. The upper end is at 50 (solid curve), 100 (dashes), 300

(dot-dashes), and 1000 keV (dots-dashes). The calculation is σ0 = 5.5 and a zenith angle of

0◦. The y-axis is the 1–1000 keV peak flux (ph s−1 cm−2), while the x-axis is Ep in keV.
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Fig. 15.— The sensitivity of the GBM NaI array as a function of ∆E for α = −1 and

β = −25. For all curves ∆E begins at 5 keV. The upper end is at 50 (solid curve), 100

(dashes), 300 (dot-dashes), and 1000 keV (dots-dashes). The calculation is σ0 = 5.5 and a

zenith angle of 0◦. The y-axis is the 1–1000 keV peak flux (ph s−1 cm−2), while the x-axis

is Ep in keV.



– 21 –

Fig. 16.— Two sets of ∆E for α = −1 and β = −2. For the first (solid curves) ∆E=5–

100, 50–300, and 100–1000 keV while for the second (dashed curves) ∆E=5–1000 and 50—

1000 keV. The calculation is σ0 = 5.5 and a zenith angle of 0◦. The y-axis is the 1–1000 keV

peak flux (ph s−1 cm−2), while the x-axis is Ep in keV.
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Fig. 17.— Two sets of ∆E for α = −1/2 and β = −3. For the first (solid curves) ∆E=5–

100, 50–300, and 100–1000 keV while for the second (dashed curves) ∆E=5–1000 and 50—

1000 keV. The calculation is σ0 = 5.5 and a zenith angle of 0◦. The y-axis is the 1–1000 keV

peak flux (ph s−1 cm−2), while the x-axis is Ep in keV.
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Fig. 18.— Two sets of ∆E for α = 0 and β = −2. For the first (solid curves) ∆E=5–100, 50–

300, and 100–1000 keV while for the second (dashed curves) ∆E=5–1000 and 50—1000 keV.

The calculation is σ0 = 5.5 and a zenith angle of 0◦. The y-axis is the 1–1000 keV peak flux

(ph s−1 cm−2), while the x-axis is Ep in keV.
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Fig. 19.— Two sets of ∆E for α = −1 and β = −25. For the first (solid curves) ∆E=5–

100, 50–300, and 100–1000 keV while for the second (dashed curves) ∆E=5–1000 and 50—

1000 keV. The calculation is σ0 = 5.5 and a zenith angle of 0◦. The y-axis is the 1–1000 keV

peak flux (ph s−1 cm−2), while the x-axis is Ep in keV.
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Fig. 20.— Sensitivity curves for a NaI trigger (solid) and BGO trigger (dashed) for a burst

on the LAT normal with α = 0 and β = −2. Two sets of ∆E are shown for each trigger:

∆E=5–1000 keV and 50–300 keV for NaI and ∆E=0.15–1 MeV and 0.15–30 MeV for BGO.

The NaI trigger assumes two detectors triggered at σ0 = 5.5 while the BGO trigger assumes

only one detector triggered at σ0 = 8. The y-axis is the 1–1000 keV peak flux (ph s−1 cm−2),

while the x-axis is Ep in keV.
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Fig. 21.— Sensitivity curves for a NaI trigger (solid) and BGO trigger (dashed) for a burst

on the LAT normal with α = −1 and β = −2. Two sets of ∆E are shown for each trigger:

∆E=5–1000 keV and 50–300 keV for NaI and ∆E=0.15–1 MeV and 0.15–30 MeV for BGO.

The NaI trigger assumes two detectors triggered at σ0 = 5.5 while the BGO trigger assumes

only one detector triggered at σ0 = 8. The y-axis is the 1–1000 keV peak flux (ph s−1 cm−2),

while the x-axis is Ep in keV.
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Fig. 22.— Sensitivity curves for a NaI trigger (solid) and BGO trigger (dashed) for a burst

on the LAT normal with α = −1 and β = −5. Two sets of ∆E are shown for each trigger:

∆E=5–1000 keV and 50–300 keV for NaI and ∆E=0.15–1 MeV and 0.15–30 MeV for BGO.

The NaI trigger assumes two detectors triggered at σ0 = 5.5 while the BGO trigger assumes

only one detector triggered at σ0 = 8. The y-axis is the 1–1000 keV peak flux (ph s−1 cm−2),

while the x-axis is Ep in keV.


