IDS Report

Chuck Dermer (Naval Research Laboratory) GLAST/SWG 10 February 2003

Collaborators:

Armen Atoyan (University de Montreal) Blazars, GRBs Robert Berrington (NRL) Clusters of Galaxies Markus Böttcher (Rice University) GRBs, Blazars James Chiang (UMBC/SLAC) GRBs Stuart Wick (NRL) Cosmic Rays, Neutrinos

Gamma Ray/High Energy Neutrino Connection

$$p + \gamma' \rightarrow n + \pi^+, \ p + \pi^0 \rightarrow \gamma$$
$$\pi^+ \rightarrow e^+ + v_e + v_\mu + \overline{v}_\mu$$

1. Neutral Beams from Blazar Jets (March ApJ)

Combined lepton + hadron model Importance of external radiation field Neutron, neutrino, high-energy gammaray production Evidence for UHECR acceleration

 $>100\,\mathrm{kps}$ scale jet of Pictor A (Wilson et al. 2001, ApJ 547, 740)

Nonthermal gamma-rays ⇒ nonthermal particles + Intense photon fields

 \Rightarrow Strong photomeson production

Hadronic Cascade Radiation from 3C 279

(Limits proton/electron ratio)

Predict detectable neutrino production from 3C 279 with a km-scale neutrino telescope; Hadronic gamma-ray emission detectable with GLAST

2. Nonthermal Particles and Radiation Produced by Cluster Merger Shocks

Thermal bremsstrahlung X-ray Emission of Galaxy Clusters traces gravitational well

Rich clusters (thousands of Galaxies; $\sim 10^{15} M_{sun}$; kT $\sim 5-10 \text{ keV}$, L_X $\sim 10^{43} - 10^{45} \text{ ergs s}^{-1}$) Velocity dispersions $\sim 500-1000 \text{ km s}^{-1}$

Poor clusters (hundreds of Galaxies; $\sim 10^{14} M_{sun}$; kT $\sim 1-5 \text{ keV}$, $L_X \sim 10^{41} - 10^{43} \text{ ergs s}^{-1}$) Velocity dispersions $\sim 250-500 \text{ km s}^{-1}$

~5-10% of total mass of cluster; Orbital motion dominated by distribution of dark matter

Which clusters are GLAST-bright?

Structure Formation

- Density fluctuations cause region to collapse.
 - Magnitude of the density fluctuation determines the formation time
 - Larger structures form by accreting smaller clumps--hierarchical merging
 - Lumpy, continuous accretion

Cluster Merger

• Simulation of merging clusters of galaxies

Shocks in Merging Clusters

- $(\Omega_0, \Omega_R, \Omega_\Lambda)$ (mass, curvature, and dark energy)= (0.3, 0.0, 0.7)
 - Redshift of cluster:
 - Cosmic Microwave Background (CMBR) dependence
 - $U_{CMBR}(z) = U_{CMBR}(z=0) (1+z)^4$
 - Rich clusters from by accreting poor clusters
 - Shocks in Merging Clusters

Particle Injection

• Power law distribution with exponential cutoff $Q_{e,p}(E,t) = Q_{e,p}^{0} \left[\frac{(pc)^{-\alpha}}{\beta} \right] \exp \left[-\frac{E}{E_{\max}(t)} \right]$

- Occurs only if $M \ge 1.0$

- Occurs only during lifetime of shock
- Normalization

$$\int_{E_{\min}}^{E_{\max}} E_{e,p} Q_{e,p}(E,t) dE = \eta_{e,p} \left(\frac{1}{2} \langle n_{\text{ICM}} \rangle \eta_{\text{He}}^{e} m_{p} v_{s}^{2} \right) (A_{s} v_{s})$$

- Where $\eta_{e,p}$ is an efficiency factor, and is set to 5%.
- Typical values are $E_{tot} \approx 10^{63-64}$ ergs

Particle Energy Spectra

Nonthermal Particle Spectra

Nonthermal Emission from Cluster Merger Shocks

- Unidentified EGRET sources?
- Diffuse Extragalactic γ-ray Background?
- Nonthermal Particle Pressure
- Detectability with GLAST and LOFAR
 - Should be able to detect these features with the next generation of γ-ray observatories
 - Possible indicator of the dark matter profiles
 - Not a dominant contributor to the Diffuse Extragalactic γ-ray Background
 - Will significantly alter thermal X-ray emission

γγ Optical Depth

Energy Fluence of Photomeson Muon Neutrinos

For a fluence of 3x10⁻⁵ ergs/cm², N_v predicted by IceCube: $N_v \approx 0.0032$, 0.00015, 0.00001 for $\delta = 100, 200,$ and 300, respectively in collapsar model $N_v \approx 0.09$ for $\delta =$ 100 and 300 in supranova model

Gamma Ray and High-Energy Neutrino Observations

Neutrinos ⇒ Cosmic Ray Sources Gamma-rays: Sites of cosmic ray acceleration in Galaxy Gamma-rays: Clean fireball bursts/supranova model

Gamma-rays + Neutrinos: test collapsar and supranova models

Cosmic Rays originate from the stars that produce the subclass of SNe whose core collapses a second time to a black hole and makes a GRB

GLAST detection of enhanced radiation from GRB remnant

