

Science Requirements Review GLAST Burst Monitor

Charles Meegan

- 1. Introduction
- 2. Simulations
- 3. Energy Range (Rqmts 19 & 20)
- 4. Field of View (Rqmt 21)
- 5. Energy Resolution (Rqmt 22)
- 6. On-board burst location accuracy (Rqmt 23)
- 7. GRB notification time (Rqmt 24)
- 8. Dead time (Rqmt 25)
- 9. Timing accuracy (Rqmt 26)
- 10. Burst Sensitivity (Rqmts 27 & 46)
- 11. Summary

"It is a GLAST requirement to have onboard low-energy and mediumenergy measurements by the secondary GBM instrument for gamma-ray bursts. The key objectives of the GBM are to:

- provide lower energy and medium energy context measurements of the light curve and spectrum of bursts for comparison with high energy measurements of the LAT;
- provide positions for bursts over a wide field of view to fewdegree accuracy to allow repointing of the spacecraft to position the LAT on the burst source,
- provide the rapid burst positions to the spacecraft for transmission to the ground for correlated observations by other ground-based and space-based telescopes."

- + Several GBM science requirements verified by simulation
- + Simple geometric model of observatory
 - Includes LAT and LAT radiator,
 - Includes partial blocking of detectors
 - Includes partial blockage of Nal 2 & 8 by Nal 1 and 7
 - Does not include solar panels
- + Uses measured Nal mounting ring positions and angles

- Uses GEANT code to determine efficiency 50-300 keV
- + Three burst spectra: typical, hard, and soft.
- + Atmospheric scattering included for location accuracy simulation

- Background inferred from BATSE data
 - Measurements from 450 km to 500 km
 - Rates ∝ altitude^{1.7}
 - Variation with orientation \sim 5% (1 σ)
 - Variation with orbit 10-20% (1 σ , 26° inclination)
 - Extrapolation to 565 km for GLAST
 - GBM Rates: 195 cps @ 450 km; 290cps @ 565 km

BATSE Rate & Altitude History

Science Requirements Review

"GBM shall have an energy range from 10 keV to 25 MeV to cover the classical gamma-ray band where most of the burst photons are emitted."

No.	Quantity	Requirement	Goal	Minimum	Actual Performance
19	Low Energy	< 10 keV	< 5 keV	< 20 keV	~8 keV
20	High Energy	> 25MeV	> 30MeV	> 20 MeV	~30 MeV

Low energy limit determined by: Nal window transmission Noise threshold ADC range High energy limit determined by BGO crystal efficiency ADC range

Required dynamic range of ADC is ~100. DPU testing verified ADC dynamic range of >200. Calibration sources verified dynamic range >100.

Detector Efficiency

At 10 keV, NaI effective area is \sim 20 cm². At 25 MeV, BGO effective area is \sim 13 cm².

Science Requirements Review

Noise threshold is defined as the lowest channel having a noise rate of <100 cps/keV. Channels are 0.25 keV wide for this test.

Detector	Noise Threshold (keV)	Noise Threshold (keV)
#	Main Board	Redundant Board
1	3.8	<2.5
2	4.2	3.5
3	3.2	5.2
4	4.2	<2.5
5	4.0	<2.5
6	4.2	<2.5
7	<2.5	<2.5
8	3.8	<2.5
9	<2.5	4.2
10	4.0	3.2
11	4.8	4.2
12	4.2	<2.5

Simulated LAT/GBM Joint Spectrum

"GBM shall have a field of view of 8 sr to <u>cover all of the visible sky</u> from low-Earth orbit. The GBM field of view shall overlap that of the LAT."

No.	Quantity	Requirement	Goal	Minimum	Actual
21	Field of View	> 8 sr	> 10 sr	> 6 sr	9.05 sr

Field of view is defined as the integral of effective area over solid angle divided by peak effective area. For GBM, the area is the projected visible effective area (50-300 keV) of the NaI detectors.

Effective area of Nal detectors as a function of spacecraft coordinates, in units of detector area (126.7 cm²).

Energy Resolution Requirement

No.	Quantity	Requirement	Goal	Minimum	Actual
22	Resolution	< 10%	< 7%	< 12 %	6.3% – 7.3%

Gaussian equivalent 1 σ value; on-axis; energy range of 0.1 – 1.0 MeV.

The worst-case measured resolution at 88 keV is 7.3% (1 σ)

Nal Detector Spectrum

Science Requirements Review

2 February 2007

BGO Detector Spectrum

Science Requirements Review

2 February 2007

Energy Resolution Measurements

Gain Stability

- Temperature Effects
 - Worst-case thermal profile over an orbit
 - 0.8% gain dispersion (Nal and BGO)
- + HV stability
 - HVPS spec ±1 volt
 - 0.8% gain dispersion
- Magnetic Fields
 - Calibration of Nal EQM to 2 Gauss
 - Worst-case torquer bar variations
 - Gain dispersion of 1.2% for Nal and 0.5% for BGO
- Total dispersion: <2% on orbital timescale</p>
- High Rate Effects (pulse pile-up)
 - Measurements with sources at MSFC
 - ~4% spectral distortions at 100 kcps
- Automatic Gain Control
 - On-board monitoring of 511 keV line
 - Integration times ~1 hr.

GBM shall have a capability as a goal to rapidly (< 2 seconds) determine burst positions to an accuracy of < 15 degrees (1 σ) for purposes of notifying other observers and repointing the spacecraft to optimize LAT observations.

(Burst is 1 s long with flux of 10 cm⁻²s⁻¹, 50 to 300 keV.)

No.	Quantity	Requirement	Goal	Minimum	Actual
23	Location	NA	< 15°	NA	< 8°
24	Time	< 2 s	< 1 s	< 5 s	1.8 s

Timing

- Computation time required is 0.3 s
- Integration time is an adjustable parameter
- Longer integration would improve accuracy for weak events

- + Algorithm
 - Compare Nal rates to a table of 1634 points on sky
 - X^2 test with floating normalization
 - Table includes atmospheric & S/C scattering (zenith pointing)
 - Typical burst spectrum assumed
- + Errors
 - Grid resolution 5°
 - Range of actual burst spectra
 - Atmospheric scattering, particularly variation with off-axis pointing
 - Systematic errors in table (DRMs, S/C scattering)

Simulation Results

Event Dead Time Requirement

No.	Quantity	Requirement	Goal	Minimum	Actual
25	Dead Time	< 10 µs	< 3 µs	< 50 µs	2.6 μs

On GBM, the deadtime is set by command and is nominally 2.6 μ s. This is a tradeoff between energy resolution and high rate performance.

Events in the overflow channel have 10 μ s deadtime.

GLAST shall have absolute timing knowledge to 10 μ sec and absolute position knowledge to 3.3 km to facilitate searches for pulsations from millisecond pulsars and characterization of pulse profiles of detected pulsars.

No.	Quantity	Requirement	Goal	Minimum	Actual
26	Inst. Time	< 10 µs	< 2 µs	< 30 µs	4 μs (corrected)
	Accuracy				20 µs (uncorr.)

Although GBM will not be observing fast pulsars, good timing accuracy is important to compare GRB pulse profiles to LAT observations. The 20 μ s accuracy of the uncorrected time tags will usually be adequate. In rare instances, simple corrections can be made to achieve 4 μ s accuracy.

GBM Clock Frequency

DPU Clock Frequency Temperature Dependence

GRB Sensitivity Requirement (Ground)

No.	Quantity	Requirement	Goal	Minimum	Actual
27	Sensitivity	< 0.5 cm ⁻² s ⁻¹	< 0.3 cm ⁻² s ⁻¹	< 1.0 cm ⁻² s ⁻¹	0.44 cm ⁻² s ⁻¹

GRB peak brightness sensitivity, 50 - 300 keV range, 5σ detection.

Interpreted as a threshold for detection, 1 second duration, typical spectrum.

Trigger algorithm unspecified.

- + Consider only 2 pairs of detectors (1&7 and 2&8).
- + Require coincident rate increase of both detectors in either pair.
- + Require 5 σ significance (2.867 x 10⁻⁷)
- + Single detector significance = 3.37 σ (3.786 x 10⁻⁴)
- + At predicted background rate, threshold is 0.44 photons cm⁻² s⁻¹
- + At 0.5 photons cm⁻² s⁻¹, effective area is 0.86 steradians

Triggered detectors at 0.5 photons cm⁻² s⁻¹

GRB Sensitivity Requirement (On-Board)

No.	Quantity	Requirement	Goal	Minimum	Actual
46	Sensitivity	< 1.0 cm ⁻² s ⁻¹	< 0.75 cm ⁻² s ⁻¹		0.71 cm ⁻² s ⁻¹

50% efficiency level for bursts occurring within the GBM FOV, excluding observational inefficiencies such as SAA passages and earth occultations, 50-300 keV range

<u>Algorithm</u>

Simultaneous increases in count rates of 4.5 σ above background in two or more Nal detectors in 1 second.

"GBM and LAT shall have a goal to provide data that allow rapid determination of the likelihood of a transient event being a solar flare as compared to a GRB or AGN flare."

- + GBM flight software includes Bayesian inference to categorize triggers
 - GRB
 - Solar Flare
 - Particle precipitation
 - Specific sources (Cyg X-1, transients)
- + Solar flares are relatively easy to distinguish from GRBs
 - Location
 - Spectral hardness
- + Probability of a solar flare being classified as a GRB $\approx 6\%$
- + Probability of a GRB being classified as a solar flare <1%

Altitude Effects on Key Parameters

	450 km	565 km	Delta
Nal background Rate (50-300 keV)	195	290 cps	49%
Unocculted Field of View*	8.5 sr	8.8 sr	4%
On-Board Location Accuracy	4.7°	4.3°	8%
On-Board Trigger Threshold	0.59 cm ⁻² s ⁻¹	0.71 cm ⁻² s ⁻¹	20%
Ground Trigger Threshold	0.37 cm ⁻² s ⁻¹	0.44 cm ⁻² s ⁻¹	20%

* Altitude has no effect on effective FOV

- + Timing accuracy of 10 μs demands ground correction
- + Sensitivity depends on background rate
 - Based on BATSE observations
 - Simulations extrapolate to higher altitudes than CGRO
- Location accuracy depends strongly on pointing zenith angle and spectrum
- + GBM Meets Level 2 Requirements