

Gamma-ray Large Area Space Telescope

Simulation checks

Ph. Bruel

on behalf of many working groups : Beam tests, Instrument analysis, Calibration & analysis

Simulation checks

- Data/simulation agreement
- LAT ground muons results
- Beam tests at CERN
 - Tracker
 - Calorimeter
 - ACD
 - Background studies
- Beam test at GSI
- Conclusions

Data/MC agreement : agreements

- Event processing steps :
 - Trigger and On Board Filter
 - Reconstruction algorithms
 - Classification trees

(-> Instrument Response Functions and Background rejection)

- Different kinds of agreements :
 - For raw signals
 - Local and usually not too complex
 - For reconstruction variables
 - Local or global, can be complex but still a concrete quantity
 - For classification variables
 - Global, very high correlation level
- For the whole phase space and all types of particles...

LAT ground muons and CERN beam tests

- LAT ground muons
 - Testing the real LAT
 - With a lot of muons

but no gammas, no protons

- CERN beam tests
 - Muons, gammas, electrons, positrons, protons, pions
 - From few MeV to 280 GeV
 - Testing the Calibration Unit
 - Most of the events are within two towers

but the CU is not the real LAT

The tracker and muons

- Within muon selection, the agreement between data and MC is very good, both for
 - hit multiplicityToT
- Ground muons
 were used to
 perform the
 tower alignment

The calorimeter and muons

- Muon calibration
 - The energy distribution is a little broader in the data than in MC
 - Likely explained by intrisic light emission in CsI
 - Only at very low energy
- Position measurement
 - Comparing calorimeter measurement along the crystal to the tracker extrapolated position
 - Very sensitive to intercalibration (~1% calibration error can lead to a 5mm position error)

Data (red,blue) MC (yellow)

The ACD and muons

Feb. 2, 2007

The GLAST-LAT Calibration Unit

Feb. 2, 2007

The CERN campaign

4 weeks at PS/T9 area (26/7-23/8)

- Gammas @ 0-2.5 GeV

- Electrons @ 1,5 GeV

- Positrons @ 1 GeV (through MMS)

- Protons @ 6,10 GeV (w/ & w/o MMS)

- 11 days at SPS/H4 area (4/9-15/9)
 - Electrons @ 10,20,50,100,200,280 GeV
 - Protons @ 20,100 GeV
 - Pions @ 20 GeV
- Data, data, data...
 - 1700 runs, 94M processed events
 - 330 configurations (particle, energy, angle, impact position)
 - Mass simulation
- A very dedicated team
 - 60 people worked at CERN
 - Whole collaboration represented

Feb. 2, 2007

Mass simulation

				_
Site	Particle	Energy	Angle	
PS	Full-brem	2.5	0,30,50,-215	1
PS	Tagged g	0.5,1,1.5 ,2.5	0,10,20,30,50	•
PS	e+, e-	1		•
PS	e- scan	5		
PS	р	6,10	0,30,60,90	•
SPS	е-	10,20,50 ,100,200 ,280	10,20,30,45,60 degree	•
SPS	р	20,100	0	

- Simulation of the beam upstream the CU (Geant4)
 - Trigger/veto scintillators & cerenkov
 - Electron tagger at PS
- LAT simulation (GLEAM-Geant4)
 - Automatic generation of the run configuration
 - Allowing the best comparison
- Efficient processing through the pipeline at SLAC
- Geant4 optimization
 - Simulation parameters
 - Physics lists
- Also a very dedicated team !

Dealing with a huge phase space...

Feb. 2, 2007

Tracker (work in progress...)

Hit multiplicity for gammas (0.5 to 2.5 GeV)

Hit multiplicity for 100 GeV electrons

- 10-20% more hits in data than in MC
- Effect almost independent of particle, E
- Clusters are well reproduced by MC
- More secondary particles / preshower ?
 - Lower range cuts in Geant4 : no effect
 - Testing low energy processes
 - The calorimeter should say if there is extra material upstream the CU

Tracker (work in progress...)

- Preliminary PSF results for events with 1 vertex and 2 tracks shows a good agreement between data and the simulation
- This not yet the PSF from the IRFs (i.e after signal selection and background rejection)

Feb. 2, 2007

Calorimeter (work in progress...)

- Importance of quality/fiducial cuts
- Raw energy : 10% more energy in data for electrons at SPS

Calorimeter (work in progress...)

- The beam tests allow us to fully understand the electronics of the calorimeter
 - High rates
 - Cross-talk
 - Non linearity
- The 10% energy excess at high energy is mainly due to calibration issues
 - 2diodes x 2gains : 4 ranges from 1 MeV -> 70 GeV
 - Ground calibration : muon peak at 11 MeV
 - CERN data allow a complete check of our procedure to extrapolate the energy scale from 11 MeV up to 70 GeV

Feb. 2, 2007

Calorimeter (work in progress...)

- Very good agreement at PS energies
- Thanks to the electron tagger, we can measure the energy resolution from 50 MeV up to 2.5 GeV
- After naive calibration correction, very good agreement at SPS energies

Preliminary backsplah study with ACD

- Many configurations in order to test the backsplah simulation as function of energy, angle, distance to tile
- Use the dependance with the energy in cal to determine the beam noise contribution
- After noise substraction, data is well reproduced by MC

17

Preliminary background studies

- Simulation of hadronic processes with Geant4
- Albedo gammas
- Charged particle interaction in MicroMeteoroid Shield ٠
 - Measure the probability that the particle creates a gamma like signal in the CU (no ACD signal, good signal in tracker and calorimeter)
 - Protons : preliminary results show a reasonable agreement
 - Positrons : preliminary analysis shows a clear signal due to positron annihilation with the expected probability

Albedo gammas (from 2.5 GeV e⁻)

Protons and positrons interaction in MMS

Feb. 2. 2007

Preliminary GSI results

- 17-19 November
- Beam : C @ 1.5 GeV, Xe @ 1 GeV
- Tracker clusters are x2 wider in data
- Same calorimeter quenching factors as measured in 2003

Feb. 2, 2007

Analysis status

- Beamtest working group
 - Beamtest preparation workshops
 - Beamtest data taking at CERN, GSI
 - Data analysis coordinated by :
 - Luca Latronico (INFN-Pisa)
 - Philippe Bruel (IN2P3-LLR)
 - Weekly VRVS since September + analysis workshops
- Tracker : hit excess
 - Secondary particle excess
 - Ongoing tests with low energy processes ON in Geant4
 - Tray standalone simulation
- Calorimeter : energy excess
 - Understanding and improving the calibration
- Higher level studies (PSF, energy resolution, background,...)
 - Hampered by tracker hit and cal energy discrepancies
 - But the analysis tools are ready

Conclusions

- Ongoing tests to understand the current disagreements
- Data reprocessing and mass simulation are fast and easy
 - Testing new ideas or implementing a new calibration can be done within 1-2 weeks
- A huge amount of good quality data to ensure that our simulation well reproduces the data through the LAT very large phase space
- This effort must continue
 - Our results have to be implemented in the LAT simulation
 - The whole LAT analysis will then have to be checked before launch