

GLAST Mission Status

October 1, 2004

Kevin Grady GLAST Project Manager

Recent Accomplishments

- υ Spacecraft:
 - Spacecraft detailed design completed
 - Completed extensive subsystem peer review process.
 - Completed successful spacecraft CDR in May 2004.
 - Tested Ku-band transmitter engineering model at Goddard.
 - Presently in the process of integrating flight components and fabricating primary structure. Qualification of structure occurs in November. I&T starts in January.
- υ **LAT:**
 - Initiated build of flight subsystems. First flight calorimeter nearing delivery. ACD in integration.
 - Grid also nearing delivery.
- υ **GBM:**
 - Completed successful instrument CDR in June.
 - Initiated flight detector and electronics fabrication.

Recent Accomplishments

- υ **Mission Systems**:
 - Completed two key post-CDR trades.
 - S-band architecture simplification and power-on at launch. Mission robustness study is ongoing.
 - Significant effort in process to close approximately over 800 independent review actions.
 - Updated orbital debris predictions (DCA=24m²).
 - Continue to maintain positive margin against mission performance metrics. Attitude knowledge performance predictions continue to be refined.
 - Current worse case performance predictions range between 11 and 17 arc sec over four cases which bound the 5 year mission and spacecraft hardware failures.
 - Developed integrated structural/thermal model at GSFC to assess the ETE LAT tracker on-orbit attitude knowledge performance. Anticipate improved predicts as orbital and seasonal cases are analyzed.

Recent Accomplishments

- υ Ground Systems:
 - Completed successful series of ground system element CDRs.
 - Completed Ground System SDR for entire GLAST ground system.
 - Awarded Mission Operations Center (MOC) development contract.
- υ Launch Vehicle:
 - Developed launch vehicle interface requirements document and held successful Mission Integration Working Group meeting (MIWG).
- υ Mission Critical Design Review (MCDR):
 - Critical design review for the entire GLAST mission.
 - Very positive feedback from review team. Review team findings on next slide.

- υ All elements of the design are compliant with functional and performance requirements.
 - Requirement for pointing knowledge (10 arc-sec) is not currently met, although a conservative approach was used. Mitigation plans are being implemented.
- υ The verification approach is viable and will confirm compliance with all requirements.
- Risks have been appropriately identified and mitigated or are on track for timely mitigation.
- υ The design is sufficiently mature to proceed with full-scale fabrication.
 - Exceptions include the Tungsten foil bonding issue, the successful testing of the PMTs, and the Emcore Solar Array diode weld problem. Based on efforts on-going, these aren't considered as liens to continuing fabrication.
- υ The management processes used by the project team are sufficient to develop and operate the mission.
- The schedules indicate that the mission will be ready to launch and operate on time and the control processes are adequate to ensure remaining within allocated resources.
 - Concerns over late delivery of LAT instrument and the impact to schedule and resources.

GLAST Top Ten Issues

#	Issue	Impact	Owner
1	Tracker Bias Circuits Debonding	Delays assembly of 1 st flight tracker	B. Graf
2	ACD PMTs Cracking in Engineering	Flight electronics on hold; potential delay in	B. Graf
	Testing	ACD delivery	
3	Solar Array Weld Failures	Delay to flight array fabrication	J. Bretthauer
4	Actel FPGA Failures	Potential on-orbit early failure of flight	A. Vernacchio
		electronics	
5	EEPROM Failures	Delay to fabrication of LAT electronics	E. Andrews
6	LAT Development Cost Increasing	Reserves will not be available to address	K. Grady
		emerging fabrication issues	
7	Unsigned LOAs	International contributions delayed	A. Vernacchio
8	SC EPS Design Issues	Overvoltage failure mode	J. Bretthauer
9	Calorimeter AFEE PWB Delay	Flight boards rejected, schedule delay	B. Graf
10	Incompatibility of SC & LAT Fusing	Redesign of instrument fusing and/or	J. Leibee
	and Internal LAT Subsystem Fusing	selection of different devices	

Project Master Schedule

The Road Ahead

- υ Instruments
 - Complete fabrication of LAT and GBM subsystems.
 - Initiate integration of LAT towers.
- υ Spacecraft
 - Assemble and qualify spacecraft primary structure.
 - Continue fabrication and test of flight components.
 - Initiate spacecraft bus integration activities.
- υ Mission
 - Continue refinement of tracker ETE pointing knowledge performance using cycle 3 STOP analysis.
 - Perform interface testing between spacecraft, LAT and GBM engineering models.
 - Develop detailed procedures for initial spacecraft ETE test.
- υ Develop initial releases of ground system elements.
- **υ** Provide authority to proceed for manufacturing of launch vehicle.