Cosmic-rays and

diffuse galactic gamma-ray emission

Martin Pohl

Cosmic-rays and diffuse galactic emission

Topics

• Postdoc still waiting in Taiwan for his visa (11 months)!

Postponed

- Deconvolve gas line spectra to give 3D distribution of ISM
- Devise method to account for uncertainties in diffuse model in likelihood fits
- Produce software to adapt model to LAT data (A LAT task?)

In the pipeline

- Derive model of interstellar radiation field including anisotropy
- Derive hadronic gamma-ray emissivities based on Monte-Carlo code DPMJET.

Publication accepted

• Work out time-dependent cosmic-ray nucleon propagation in the Galaxy

Standard indicators for cosmic-ray propagation may be flawed!

Scientific objectives

In case of an SNR origin the CR electron spectrum would vary in space and time throughout the Galaxy.

• would a SNR origin of CR nucleons also lead to significant fluctuations of the CR density in the Galaxy, which then would modify secondary-to-primary ratios from their steady-state values?

• are there any signatures in the CR distribution in the Galaxy, that might permit to infer a SNR origin of CR nucleons on the grounds of locally observed CR spectra and the diffuse Galactic gamma-ray emission?

The model

The sources: $S = \sum q_j \,\delta(\vec{r} - \vec{r}_j) \qquad q_j \,(\zeta, t) = q_{j_0} \,\left(t - t_j\right) \exp\left(-\frac{t - t_j}{20 \,\mathrm{kyr}}\right) \Theta\left(t - t_j\right) \,\left(\frac{\zeta}{\zeta_0}\right)^{-s}$

Parameters are chosen to reproduce B/C and the Be isotope ratio in the steady-state.

The method

- we need to get the physics right on small scales \rightarrow no finite-difference algorithm!
- Assume gas distribution Ω and diffusion coefficient independent of r and ϕ .

$$\frac{\partial N}{\partial t} - S = k(p) \left\{ \frac{1}{r} \frac{\partial N}{\partial r} + \frac{\partial^2 N}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 N}{\partial \varphi^2} + \frac{\partial^2 N}{\partial z^2} \right\} - \Omega(z) v \sigma N$$

• Expand desired solution in a Fourier-Bessel series.

$$N = \frac{1}{\pi} \sum_{n} \sum_{m} \left(A_{nm} \cdot \cos\left(n\varphi\right) + B_{nm} \cdot \sin\left(n\varphi\right) \right) \frac{j_n \left(\alpha_{nm} r\right)}{\left(j'_n \left(\alpha_{nm} R\right)\right)^2}$$

The problem is thus reduced to numerically solving many simple equations

$$\frac{\partial A_{nm}}{\partial t} - S_{nm}^A = k(p) \left[-\alpha_{nm}^2 A_{nm} + \frac{\partial^2 A_{nm}}{\partial z^2} \right] - \Omega(z) v \sigma A_{nm} , \quad S_{nm}^A = \sum_i q_i(p,t) \cos\left(n\,\varphi_i\right) \frac{j_n\left(\alpha_{nm}r_i\right)}{\left(j_n\left(\alpha_{nm}a\right)\right)^2}$$

and similar equations for B_{nm}

$$\frac{\partial B_{nm}}{\partial t} - S_{nm}^B = k(p) \left[-\alpha_{nm}^2 B_{nm} + \frac{\partial^2 B_{nm}}{\partial z^2} \right] - \Omega(z) v \sigma B_{nm} , \quad S_{nm}^B = \sum_i q_i(p,t) \sin\left(n\,\varphi_i\right) \frac{j_n\left(\alpha_{nm}r_i\right)}{\left(j_n'\left(\alpha_{nm}a\right)\right)^2}$$

Temporal variation of the oxygen flux

Variations by typically 20% with high amplitude spikes!

The spectra of cosmic rays

Only the flux varies, not the spectra!

Primary cosmic rays vs. secondaries

Only primary cosmic rays are affected by flux variations!

The B/C ratio varies!