GLAST: A GeV All Sky Monitor

Interdisciplinary Scientist Proposal of Brenda Dingus University of Wisconsin--Madison dingus@physics.wisc.edu

22 September 2000

GLAST Sensitivity

IDS Proposal

GLAST GRB Research

- GRB Spectral Evolution
- GRB GLAST Simulations
 - < 30 MeV to resolve fastest time variability at highest E
 - Probe Quantum Gravity
 - > 10 GeV to extend spectra to highest E
 - Constrain Bulk Lorentz factor and Intergalactic absorption
- GRB Analysis Software
- **TeV Rapid Notification Service**
 - Develop algorithms to promptly search for highest E transients

Interdisciplinary Research

- EGRET analysis
- Milagro: A TeV All Sky (northern hemisphere) Monitor

EPO and SWG

Energy Spectra of GRBs

Spectra of bursts have peak fluence in narrow range of energy as seen in these 3 bright bursts

Highest Energy Spectrum from GRB

dN/dE α E^{-1.95±0.25} or E² dN/dE α E^{0.05±0.25}

Higher E γ-rays Predicted

Importance of Highest Energy Observations

•Gamma Rays attenuated by γ (GeV) + γ (keV) --> e⁻ + e⁺

•Density of keV photons high is inferred by rapid variability and source distance

•No attenuation if emission is from fireball with LARGE bulk Lorentz factor--peak cross section if $E_1 E_2 \sim 4 m_e^2 c^4 / (1-\cos \vartheta)$

GeV Afterglows

Longer duration emission at GeV than MeV

- Due to external shocks which cause lower energy afterglows?
- Significant fraction of the energy released?

GLAST GRB Capabilities

Simulation of Bursts Detected in One Year of Observation assuming extrapolation of EGRET power law spectra (for which no high energy cut off have been observed)

Extragalactic Background Light Absorption

- γ (10-100 GeV) + γ (100-10 eV) --> e⁻ + e⁺
- Ultraviolet to optical photon density probes stellar initial mass function (IMF) at high redshifts

- UVto IR photon density at large redshifts is difficult to determine
- Theoretical calculations differ considerably!
- Ramifications to stellar and galaxy formation in the early Universe

GeV Astrophysical Sources

TeV Astrophysical Sources

- ^oConfirmed Detection
- Unconfirmed Detection

Why so Few Observed TeV Sources?

Fewer TeV Accelerators, but

- X-ray emission from supernova remnants and active galactic nuclei => TeV electrons
- Sources of >10¹⁹ eV cosmic rays likely to emit TeV γ-rays

• Long term monitoring is needed to catch flares

Better TeV Observatories are Being Built

Improved Flux Sensitivity to Detect Weaker Sources

• VERITAS, HESS, MAGIC, CANGAROO

Lower Energy Threshold to Detect Distant Sources

• STACEE, CELESTE, Solar 2

Large Field of View, High Duty Factor to Identify New and Flaring Sources

• MILAGRO, Tibet EA_γ, ARGO

Improved Observatories

TeV Capabilities for Variability Studies

The Highest E γ-rays

•Due to huge collection area TeV observers can detect rapid variability but need rapid notification

•GLAST p.s.f ~5' @ 10 GeV

Detecting TeV Gamma Rays

Low energy threshold (300 GeV) Good background rejection (99.7%) Small field of view (2 msr) Small duty cycle (< 10 %) High energy threshold (100 TeV) Moderate background rejection (50%) Large field of view (~2 sr) High duty cycle (>90%) Milagro: The Best of Both Worlds

Use water instead of scintillators to detect EAS particles

100% of the area is sensitive (instead of 1% with scintillator)

Milagro is in the Jemez Mountains 35 miles west of Los Alamos at an elevation of 8500'

Pond previously used by LANL geothermal project

Milagro Completed

Current Status

Milagro physics runs began 12/99 Current event rate ~1500 Hz

- Raw Data Rate ~ 5 MBytes/sec
- Reconstructed Data ~

80 kBytes/sec (2 TBytes/year)

Duty factor >90% Angular resolution ~ 0.5° Detect shadow of Moon in cosmic-rays

Milagrito GRB Observations

•54 satellite-detected GRBs in Milagrito's field of view (zenith angle < 45°)

•GRB970223 brightest burst at few 100 keV

GRB 970417A

•18 events detected when3.46 expected

•Probability of this excess within the satellite-determined positional error box is 2.8 x 10⁻⁵

•Probability that one of 54 bursts has such an improbable excess is 54 x 2.8 x 10⁻⁵ = 1.5 x 10⁻³

•Atkins, et al. ApJ Lett 533 L119 April 2000

 $z\sim 0.03 => E\gamma < 10 \text{ TeV so } L < 1 \times 10^{49} \text{ ergs}$

Milagro and GRBs

- Improved Sensitivity
- Energy Resolution
- Background Rejection
- If GRB970417a had been observed by Milagro, then 72 events with 13.8 background => chance prob. 10⁻²⁷ so satellite notification is NOT required
- 3 June 2000 Compton Gamma-Ray Observatory RIP

