
GLAST GLASTGLAST

Beowulf - a DBMS alternative
for GLAST

With thanks to Richard Fink,

Code 631

GLAST GLASTGLAST

Spatial Organization

¥ The GLAST study report recommended narrow-field FITS
files each of which represents a mosaic tile on the sky.

¥ Reprocessing would mean reassignment of photons to other
FITS tile files and their deletion from their current location.

¥ Queries involving indices that were NOT spatial could be
very slow, e.g. find all photons > 20GEV

¥ BUT spatial queries are fast because they are sequential.
¥ Update in place of a particular photon would be hard.

¥ Commercial DBMS systems that manage photons in the
FITS files would be expensive - and the update and time-
order retrieval problem still exists.

GLAST GLASTGLAST

Beowulf

¥ Beowulf creates supercomputers out of
commodity PCs for low price/high performance.

¥ With disks on each PC, the Beowulf has a large
number of independent and parallel I/O channels.

¥ Setting each PC to read the photons on its disk and
accept/reject them maximizes throughput.

¥ Storing data randomly in space and sequentially in
time is an efficient I/O strategy for GLAST

¥ Avoiding high cost DBMS licensing is a plus

GLAST GLASTGLAST

14

26

43

51

99

17

24

36

38

70

11

16

19

37

61

10

15

17

27

44

3

6

9

14

80

2

5

8

13

49

1

4

7

12

48

Beowulf

Satisfy Spatial Query

Data arranged
randomly wrt space -
sequentially in time

22 - accepted

22 - rejected

Thruput is max
when required
elements are

random

GLAST GLASTGLAST

ID,
Time,
RA,

DEC,
energy

Beowulf Reads

Index file of
minimal records is
read sequentially.

Post-recon photon
dataset (ntuple-plus)

is read randomly
based on index

Selected records come
from several disks -
maximizing thruput

For many users, the index
data may be enough.

GLAST GLASTGLAST

The Index Table

Events per
Access

Index Read
Time

Event Read
Time

Ethernet
Transfer

Time

Total time Archive
Service Rate

(per day)
1,000 150 9 0.02 159 543

10,000 150 84 0.2 234 369
100,000 150 833 2 985 87

1,000,000 150 1680 20 1550 55
10,000,000 150 1680 200 1730 50

Once the index is read
and the yield is high, it is
faster to read the data file

sequentially than randomly

The entire index must be read,
no matter how few photons are

actually retrieved

Random reads are costly in I/O. High-yield queries
will be faster read sequentially. All queries will have
an initial index-read overhead. The index file for 1
year is ~2GB - feasible for keeping in memory.

Time in secs.

GLAST GLASTGLAST

An example

Like
exposure

Like photon
index

In this earth science
application, users
request a forest

cover image. User
requests a time
range, a lat-lon

range and a
vegetation index

range.
Like

energy

A sample query
processed nearly
9 billion separate
observations in
25 minutes

GLAST GLASTGLAST

Upgrade Path

¥ Add entire computers and disks over time without
changing the architecture.

¥ Replace components if they break

¥ Not have to rewrite any software

¥ Requires the choice of a platform and operating
system that has a lot of inertia, i.e. likely to persist

¥ Requires an architecture that is extensible.

¥ Hardware replacement can be done with a
distributed DBMS or Beowulf - but license cost
may be a big issue with a commercial DBMS

