Detector Triggers and Burst Populations

David Band (GLAST SSC—GSFC/UMBC)
WHAT IS BURST DETECTOR SENSITIVITY?

- A detector’s sensitivity is the threshold intensity at which a burst could have been detected.
- Rate trigger—the standard trigger looks for statistically significant increases in the detector’s count rate
 - The counts are binned over an energy range E and an accumulation time t.
 - The background is estimated from the counts accumulated over a longer period beforehand. The fluctuation scale s is the square root of the expected background in $t \times E$.
 - A statistically significant increase is a predetermined number of s.
- Complications:
 - May require a trigger in multiple detectors; for flat detectors with different orientations this introduces a variable threshold
 - After a rate trigger, may require that imaging finds a point source
HOW IS SENSITIVITY MEASURED?

- The most accurate sensitivity measure is the intensity the trigger measures, i.e., the peak count rate averaged over ΔE & Δt. But counts=instrumental, photons=physical. Because of imperfect efficiency and energy resolution, a spectrum is needed to translate this into a peak photon flux. Why translate to ΔE, not some other energy range?

- Note that peak photon flux may not be the most interesting intensity measure physically.

- Because bursts are not constant for seconds, and burst lightcurves differ at different energies, peak fluxes over ΔE_1 & Δt_1 and ΔE_2 & Δt_2 cannot be compared directly.

- A numerically better (=smaller) sensitivity over a different ΔE & Δt does not mean that fainter bursts can be detected.

- The number of bursts and their type depends on the detector and its trigger.
How Many Bursts Are There?

- Since the entire burst population has not been sampled, the answer depends on E & t.
- BATSE provided the best determination of the burst rate.
 - Initial report of 800 bursts/yr/sky underestimated the observing efficiency
 - Current number is 666 bursts/sky/yr above BATSE’s threshold
 - BUT, this threshold was not sharp. BATSE was ~82% complete above $f=0.3$ ph/cm2/s.
- Correcting for completeness, etc., the burst rate is 550 bursts/yr/sky for $t=1.024$ s and $E=50-300$ keV above $f=0.3$ ph/cm2/s.
 - BATSE actually had $t=0.064$, 0.256, and 1.024 s.
 - Usually $E=50-300$ keV, but other energy bands tried.
- But what does this mean in terms of hard bursts? Soft bursts? Long bursts? How can we estimate the burst rate of a detector with different energy sensitivity (e.g., Swift)?
• Usually trigger sensitivity $1/\Delta t$
• But peak fluxes are usually smaller on longer timescales
• Therefore, increasing Δt does not mean that bursts a factor of Δt can be detected
• Could there be populations of very long or very short bursts that are not detected?
• Studies of untriggered BATSE bursts did not find many very long bursts.
• A study of the 100 brightest BATSE lightcurves using all possible Δt shows:
The average increase in sensitivity relative to \(t=1 \) s is only a factor of 1.6!
There were not a large number of bursts where the greatest sensitivity was for small Δt.
ENERGY DEPENDENCE

- How do we compare detectors with different efficiencies and trigger τE?

- Use a fiducial peak photon flux F—i.e., always use the same energy band.
 - A spectral shape must be assumed
 - I propose 1-1000 keV to cover hard and soft spectra

- Study sensitivity as a function of the spectrum’s hardness. Burst spectra can be approximated as

$$N \ E^{\alpha} \exp[-E/E_0] \text{ at low energy}$$

$$N \ E^{\beta} \text{ at high energy}$$

The peak of $E^2 N \ f_\alpha$ occurs at $E_p=(2+\alpha)E_0$. E_p is a measure of spectral hardness.

- To eliminate the dependence on τt, use $\tau t=1$ s.
Bursts will populate the E_p-F plane, while the detector sensitivity is a curve through the E_p-F plane.

There remains a residual dependence on the high and low spectral indices, β and α.

Because of varying background and (in some cases) the requirement that ≥ 2 detectors trigger, detector sensitivity will vary with time and over the FOV. I use the maximum sensitivity (minimum F).

E_p and F are for the peak of the lightcurve. Unfortunately, rarely are spectral fits presented for this peak. Thus we do not have the data to populate the E_p-F plane with bursts. But hardness ratio-intensity plots indicate general trends.
Solid line—$a = -1, b = -2$; dashed line—$a = -0.5, b = -2$; dot-dashed line—$a = -1, b = -3$.
SWIFT—INCREASED LOW E SENSITIVITY

Solid line—$a = -1, b = -2$; dashed line—$a = -0.5, b = -2$; dot-dashed line—$a = -1, b = -3$.
Solid line—$a = -1, b = -2$; dashed line—$a = -0.5, b = -2$; dot-dashed line—$a = -1, b = -3$.
Kippen et al., 2002, Woods Hole GRB Workshop. Note that F and E_p are reversed.
SUMMARY

• Detector sensitivities with different sets of E and t cannot be compared directly.
• A variety of accumulation times t will increase a detector’s sensitivity, but not by large factors.
• Detector comparisons should be done in the E_p-F plane.
• BATSE found that the burst rate is 550 bursts/yr/sky for $t=1.024$ s and $E=50-300$ keV above $F=0.3$ ph/cm2/s. This translates into a rate for a region of the E_p-F plane.
• Swift and BATSE will have comparable sensitivities above $E_p=100$ keV, while Swift will be much more sensitive at low energies.
• As expected, the GBM NaI detectors will be significantly less sensitive than BATSE.
• The LAT will be interested in high F, high E_p bursts.
FLUX RATIO FOR DIFFERENT ENERGY BANDS

Solid line—$a = -1$, $b = -2$; dashed line—$a = -0.5$, $b = -2$; dot-dashed line—$a = -1$, $b = -3$.
Expected GBM Detection Rate

- Assume triggering on 50–300 keV band in $\Delta t=1$ s time bins. A 4.5Δt increase in the 2nd brightest detector is equivalent to \sim6.5Δt in the LAT FOV. This results in a threshold peak flux of $f_0=0.814$ ph s$^{-1}$ cm$^{-2}$.

- Based on the BATSE-observed burst rate $N_{\text{sky}}=(0.814/0.3)^{-0.8} \times 550=\sim250$ bursts/sky/year

- Different Δt increases detection rate by \sim50%, giving $N_{\text{sky}}=\sim370$ bursts/sky/year
 - Within 55° FOV ~80 bursts/year
 - Within 72.5° FOV ~130 bursts/year
 - Within \sim1/2 sky, ~185 bursts/year.
Empirical LAT Detection Rate

- Extrapolate BATSE spectra to LAT energy band:
 1) The Preece et al. (2000) catalog of ~5500 time resolved spectral fits from 156 high flux, high fluence bursts
 2) The spectral fits to ~1400 bursts by Mallozzi et al.

- The number of bursts is normalized by BATSE rate. The high energy spectral index is forced to be <-1.8. Spectral extrapolations are folded with the LAT effective area for different inclination angles, and the results are integrated over inclination angle.

- Limitations: too few strong bursts, incompleteness at faint end, lack of spectral resolution.
Empirical Prediction

![Graph showing empirical prediction of bursts per year versus counts per burst. The graph compares the Mollozzi Sample and the Preece Sample.]