Burst Capabilities of the GBM

by Giselher Lichti MPE Garching

GLAST Burst-Monitor Approach

Main goals of the GBM

- measuring γ -rays from GRBs at low energies
- having a larger FoV than the LAT to allow repointing of the LAT
- localizing bursts in this FoV
- allowing time-resolved spectroscopy.
- These goals can be achieved by

- an arrangement of 12 thin NaI detectors to locate GRBs (as with BATSE) and get low-energy spectrum.
- use of two BGO detectors to get spectral overlap with the LAT.

4 × 3 Nal-detectors: ∅: 12.7 cm, thickness: 1.27 cm E-range: 5 keV - 1 MeV

GLAST Burst Monitor: overlapping energy ranges LAT / BGO / Nal 2 BGO-detectors: Ø: 12.7 cm, thickness: 12.7 cm E-range: 150 keV - 30 MeV

Burst localisation via count-rate comparison of different Nal-detectors (BATSE - principle)

Burst-Monitor Performance

- spectral coverage from ~5 keV to ~30 MeV (goal) (overlap with LAT: 15 - 30 MeV)
- field of view: 8.6 sr (LAT only 2-3 sr)
- sensitivity:
 - ~ 0.57 photons/(cm² s) for nominal on-board trigger [BATSE: ~ 0.2 photons/(cm² s)]
 - ~ 0.35 photons/(cm² s) for ultimate 5 σ sensitivity
- on-board location accuracy: < 15^o for most bursts
- ultimate on-ground location accuracy: <1.50
- ~215 bursts/year will be detected

Energy Resolutions and Effective Areas

Incidence Angle [deg]

Scientific Goals of the GBM

- continuous measurements of energy spectra for determination of spectral parameters (peak energy & power-law indices)
- measurements of light curves with high time resolution (in the ms-range)
- sensitive trigger for the main instrument of GLAST
- rapid localisation (within few seconds) of γ -ray bursts (~15⁰)

initialization of data-reduction modes in the LAT
preciser localisation (arcminutes) of the bursts by the LAT
search for objects at other wavelength regions

- preservation of the continuity to the BATSE-data
- participation in the 4th Interplanetary Network as earth-bound burst detector
- all-sky monitor for transient sources

Trigger Criteria & Interaction with LAT

- Rates are searched for sudden increases with 1.024 s resolution in energy interval 50-300 keV. Trigger criteria:
 - >4.5 σ in 2 neighbouring NaI crystals
 - similar lightcurves in both detectors
 - calculation of an unambiguous position
- Trigger signal to LAT within 5 ms
- Position to the LAT for repoint within 2 s
 - if LAT repoints, then burst-location determination to <10 arcmin (goal: 3')
 - communication of this position to other observatories within ~ 10 s
- Initiation of fast transfer of GBM data to ground
- Calculation of a refined position on ground within few minutes
- Distribution of this position to the GCN

Simulated y-ray burst spectrum of GRB 940217

Measurement of a burst spectrum over 6 energy decades! GBM needed for determination of E_p !

Spectral Characteristics of GRBs

Energy-Resolved Lightcurves

0

0

GRB 990123

CGRO results

- So-far obtained results of the observations:
 - low-energy emission lasts longer than highenergy emission
 - E_p correlates with the lightcurves (high E_p at large intensity and vice versa)
 - power-law index α shows hard-to-soft evolution
 - narrowing of the peaks with energy
 - high-energy peaks precede low-energy peaks
- With GLAST it will be possible, to investigate these correlations to high energies(evolution of power-law index β)!

Simulation of GRB 990123 for LAT + GBM

Global Properties of GRBs (BATSE Results)

Isotropic distribution

Bimodality

Non-homogeneous distribution

Prove or disprove of newly-discovered correlations

- In recent years correlations have been found which allow distance estimates of GRBs from measured burst parameters alone:
 - variability measure (Reichart et al. 2000)
 - spectral time lag (Norris et al. 2000)
 - gamma-photometric redshift determinations (Bagoly et al. 2002)
- With the data from GLAST (LAT & GBM) these correlations can be proved or disproved.

Luminosity Determination by means of a Variability Measure V (Cepheid-like Luminosity Determination?)

V/3.3

Introduction of a "robust" variability measure V

V is not depending on energy.

Calibration of the L(V)-Relation by means of 13 measured redshifts:

The more variable the lightcurve, the larger the luminosity (e. g. Reichart et al. 2001).

Luminosity-Time-Lag Relation of GRBs

Norris et al. (Ap. J. 534, 248, 2000) correlated the peak luminosity with the measured time lag for bursts with known redshifts:

 $L \sim \tau^{-1.1}$ τ = time delay of the peak position with energy: 25-50 keV & 100-300 keV

measurement of τ with GBM possible

Determination of a Gamma-Photometric Redshift?

Definition of a peak-flux ratio: $R = (L_1 - L_2)/(L_1 + L_2)$

25 55 100 keV

Dependence of R on z

Conclusion or Expected Results of the GBM

- Investigation of the relation between keV-MeV-GeV emission
- Measurement of
 - time-resolved energy spectra (time-resolved spectroscopy) and
 - energy-resolved lightcurves
- Final determination of the position of γ -ray bursts (~ 1.5^O)
- Production of a burst catalog with
 - position
 - duration
 - integrated fluxes (fluences)
 - maximal energy flux (energy flux at E_p)
- GRB trigger with location
 - for the main instrument (LAT) within seconds for repointing
 - for the interplanetary network
- Investigation of behaviour of spectral parameters E_p , α , β with respect to
 - correlation with high-energy emission
 - dependence on time
 - overall distribution
- Creation of transient alerts

The End

Pulse Narrowing and Time Lags

