Diffuse TeV Gamma Rays from the Galactic Plane with Milagro

> Brenda Dingus For the Milagro collaboration (Roman Fleysher/NYU PhD. Thesis)

The Milagro Collaboration

R. Atkins,¹ W. Benbow,^{2,9} D. Berley,³ E. Blaufuss,³ J. Bussons,^{3,10} D. G. Coyne,²
T. DeYoung,^{2,3} B. L. Dingus,⁷ D. E. Dorfan,² R. W. Ellsworth,⁴ L. Fleysher,⁶ R. Fleysher,⁶
G. Gisler,⁷ M. M. Gonzalez,¹ J. A. Goodman,³ T. J. Haines,⁷ E. Hays,³ C. M. Hoffman,⁷
L. A. Kelley,² J. E. McEnery,^{1,11} R. S. Miller,⁵ A. I. Mincer,⁶ M. F. Morales,^{2,12}
P. Nemethy,⁶ D. Noyes,³ J. M. Ryan,⁵ F. W. Samuelson,⁷ A. Shoup,⁸ G. Sinnis,⁷
A. J. Smith,³ G. W. Sullivan,³ D. A. Williams,² S. Westerhoff,^{2,13} M. E. Wilson,¹ X. Xu⁷

¹University of Wisconsin, Madison, WI 53706
 ⁸University of California, Santa Cruz, CA 95064
 ⁹Now at Max Planck Institute, Heidelberg, Germany
 ⁹University of Maryland, College Park, MD 20742
 ¹⁰Now at Universite de Montpellier II, Montpellier, France
 ⁴George Mason University, Fairfax, VA 22030
 ¹¹Now at NASA Goddard Space Flight Center, Greenbelt, MD 20
 ⁵University of New Hampshire, Durham, NH 0382
 ¹²Now at Massachusetts Institute of Technology, Cambridge, MA
 ⁶New York University, New York, NY 10003
 ¹³Now at Columbia University, New York, NY 10027
 ⁷Los Alamos National Laboratory, Los Alamos, NM

Milagro Schematic

- Use water to detect Extensive Air Shower particles
- 100% of the area is sensitive so ~50% of all particles hitting the water are detected.

Median energy ~2.5 TeV (for this analysis) High duty cycle (~90%) Large field of view (~2 sr) Good background rejection (~90%) Trigger Rate 1.7 kHz

Milagro Detector

Background Rejection in Milagro

Hadronic cosmic ray showers contain penetrating particles
 Muons and hadrons

Deposit energy deep in Milagro – use bottom layer

Diffuse Emission from The Galaxy

2 Years of Data: 12/00-12/02 Milagro Exposure to Galaxy

Inner galaxy: 20-100 degrees Outer galaxy: 140-220 degrees Gamma-ray cut applied to data

Background Estimation

- 721 days of data analyzed
 - Nfit > 20, zenith angle $< 50^{\circ}$, C>2.5
- Background estimation
 - Extended source requires modification of our standard technique
 - Use data taken at different time with same local coordinates.
 - Use 8 hours of data to obtain background
 - Correct for changing response of detector (breathing of atmosphere)
 - Remove source region from background estimate

Fractional Excess

Outer Galaxy 140°<b<220°

Inner Galaxy 20°<b<100°

Investigation of Systematic Effects

- Independent analysis performed
 - Different implementation of background estimation method
- Large scale anisotropy present?
 - Fit latitude profile (excluding galactic plane)
- Global check of entire analysis
 - Repeat analysis with data not passing γ -ray cut (10x the statistics)
 - Confirms ability to estimate background to 1 part in 10⁵
 - Confirms the existence of a small contribution from a large-scale anisotropy

<u>Global Cross Check</u> Without Gamma-Ray Cut on Data

Galactic Plane Results

	Inner Galaxy		Outer Galaxy	
	Raw	Subtracting Anisotropy	Raw	Subtracting Anisotropy
Excess/ Bkg	58,301/ 1.99x10 ⁸ 3.7σ	na	-20,790/ 2.12x10 ⁸ -1.2σ	na
F_{γ}/F_{cr} x10 ⁻⁵	6.5 ± 1.8 3.7 σ	3.1 ± 1.1 2.8 σ	-2.2 ± 1.8 -1.2 σ	1.1 ± 2.2 0.5σ
$F_{\gamma}(>1 \text{ TeV})$ 10 ⁻¹⁰ cm ⁻² sec ⁻¹ sr ⁻¹	na	5.3 ± 1.9 <8.0 (90% C.L.)	na	< 4.8 (90% CL)

Cautionary Note

EGRET measurement averaged over different longitude band than Milagro measurement.

Conclusions

- Milagro observations of the galactic plane are the most sensitive at TeV energies
- Systematic errors are controlled to $<< 10^{-4}$
- Indications of large scale anisotropy in cosmicrays (non-gamma-ray) data
- Observed a signal of marginal statistical significance (2.8σ) after the subtraction of a large scale anisotropy.
- Must wait for 2-3 more years of data for a solid detection

Background Rejection: C

Search for large pulses in small number of tubes

 $C = \frac{NBottom(>2Pes)}{PE_{Max}(Bottom)}$

Demand C > 2.5

Retain:

53% of Gammas

11% of Protons/Data

Q = 1.7

Expected Signal from EGRET

Removal of Source Region

- -25% effect on significance of observation
- Local distortion of background

Fractional Excess

Fractional Excess

Outer Galaxy

Inner Galaxy

arge Scale Anisotropy