Diffuse TeV Gamma Rays from the Galactic Plane with Milagro

 Brenda DingusFor the Milagro collaboration
(Roman Fleysher/NYU PhD. Thesis)

The Milagro Collaboration

R. Atkins, ${ }^{1}$ W. Benbow, ${ }^{2,9}$ D. Berley, ${ }^{3}$ E. Blaufuss, ${ }^{3}$ J. Bussons, ${ }^{3,10}$ D. G. Coyne, ${ }^{2}$ T. DeYoung, ${ }^{2,3}$ B. L. Dingus, ${ }^{7}$ D. E. Dorfan, ${ }^{2}$ R. W. Ellsworth, ${ }^{4}$ L. Fleysher, ${ }^{6}$ R. Fleysher, ${ }^{6}$ G. Gisler, ${ }^{7}$ M. M. Gonzalez, ${ }^{1}$ J. A. Goodman, ${ }^{3}$ T. J. Haines, ${ }^{7}$ E. Hays, ${ }^{3}$ C. M. Hoffman, ${ }^{7}$ L. A. Kelley, ${ }^{2}$ J. E. McEnery, ${ }^{1,11}$ R. S. Miller, ${ }^{5}$ A. I. Mincer, ${ }^{6}$ M. F. Morales, ${ }^{2,12}$ P. Nemethy, ${ }^{6}$ D. Noyes, ${ }^{3}$ J. M. Ryan, ${ }^{5}$ F. W. Samuelson, ${ }^{7}$ A. Shoup, ${ }^{8}$ G. Sinnis, ${ }^{7}$ A. J. Smith, ${ }^{3}$ G. W. Sullivan, ${ }^{3}$ D. A. Williams, ${ }^{2}$ S. Westerhoff, ${ }^{2,13}$ M. E. Wilson, ${ }^{1}$ X. Xu ${ }^{7}$ and G. B. Yodh ${ }^{8}$

[^0]
Milagro Schematic

- Use water to detect Extensive Air Shower particles
- 100% of the area is sensitive so $\sim 50 \%$ of all particles hitting

Median energy $\sim 2.5 \mathrm{TeV}$ (for this analysis)
High duty cycle ($\sim 90 \%$)
Large field of view ($\sim 2 \mathrm{sr}$)
Good background rejection (~90\%)
Trigger Rate 1.7 kHz

Milagro Detector

Background Rejection in Milagro

$>$ Hadronic cosmic ray showers contain penetrating particles
$>$ Muons and hadrons
$>$ Deposit energy deep in Milagro - use bottom layer

Gammas

Diffuse Emission from The Galaxy

2 Years of Data: 12/00-12/02 Milagro Exposure to Galaxy

Inner galaxy: 20-100 degrees
Outer galaxy: 140-220 degrees
Gamma-ray cut applied to data

Background Estimation

- 721 days of data analyzed
- Nfit >20, zenith angle $<50^{\circ}, \mathrm{C}>2.5$
- Background estimation
- Extended source requires modification of our standard technique
- Use data taken at different time with same local coordinates.
- Use 8 hours of data to obtain background
- Correct for changing response of detector (breathing of atmosphere)
- Remove source region from background estimate

Effect of atmospheric temperature cycling

Time of Day UT ($1 / 2 \mathrm{hr}$ bins)

Outer Galaxy
$140^{\circ}<b<220^{\circ}$

Inner Galaxy
$20^{\circ}<b<100^{\circ}$

Investigation of Systematic Effects

- Independent analysis performed
- Different implementation of background estimation method
- Large scale anisotropy present?
- Fit latitude profile (excluding galactic plane)
- Global check of entire analysis
- Repeat analysis with data not passing γ-ray cut (10x the statistics)
- Confirms ability to estimate background to 1 part in 10^{5}
- Confirms the existence of a small contribution from a large-scale anisotropy

Global Cross Check Without Gamma-Ray Cut on Data

Galactic Plane Results

	Inner Galaxy		Outer Galaxy	
	Raw	Subtracting Anisotropy	Raw	Subtracting Anisotropy
Excess/ Bkg	$\begin{aligned} & 58,301 / \\ & 1.99 \times 10^{8} \\ & 3.7 \sigma \\ & \hline \end{aligned}$	na	$\begin{aligned} & -20,790 / \\ & 2.12 \times 10^{8} \\ & -1.2 \sigma \end{aligned}$	na
$\begin{aligned} & \mathrm{F}_{\gamma} / \mathrm{F}_{\mathrm{cr}} \\ & \mathrm{x} 10^{-5} \end{aligned}$	$\begin{gathered} 6.5 \pm 1.8 \\ 3.7 \sigma \end{gathered}$	$\begin{gathered} 3.1 \pm 1.1 \\ 2.8 \sigma \end{gathered}$	$\begin{gathered} -2.2 \pm 1.8 \\ -1.2 \sigma \end{gathered}$	$\begin{gathered} 1.1 \pm 2.2 \\ 0.5 \sigma \end{gathered}$
$\begin{aligned} & \mathrm{F}_{\gamma}(>1 \mathrm{TeV}) \\ & 10^{-10} \mathrm{~cm}^{-2} \mathrm{sec}^{-1} \mathrm{sr}^{-1} \end{aligned}$	na	$\begin{aligned} & 5.3 \pm 1.9 \\ & <8.0(90 \% \text { c.L. }) \end{aligned}$	na	$\begin{gathered} <4.8 \\ (90 \% \mathrm{CL}) \end{gathered}$

Cautionary Note

EGRET measurement averaged over different longitude band than Milagro measurement.

Conclusions

- Milagro observations of the galactic plane are the most sensitive at TeV energies
- Systematic errors are controlled to $\ll 10^{-4}$
- Indications of large scale anisotropy in cosmicrays (non-gamma-ray) data
- Observed a signal of marginal statistical significance (2.8σ) after the subtraction of a large scale anisotropy.
- Must wait for 2-3 more years of data for a solid detection

Background Rejection: C

Search for large pulses in small number of tubes

$$
C=\frac{\text { NBottom }(>2 \text { Pes })}{P E_{\text {Max }}(\text { Bottom })}
$$

Demand $\mathrm{C}>2.5$

Retain:
53% of Gammas
11\% of Protons/Data
$\mathrm{Q}=1.7$

Expected Signal from EGRET

Removal of Source Region

- -25% effect on significance of observation
- Local distortion of background

Fractional Excess

Outer Galaxy

Fractional Excess

1	1	1	0	0	0
0	0	0	0	0	0
0	0	0		Q	Q
6	0	3	0	-	N

Inner Galaxy

[^0]: ${ }^{1}$ University of Wisconsin, Madison, WI 53706
 ${ }^{8}$ University of California, Irvine, CA 92717
 ${ }^{2}$ University of California, Santa Cruz, CA 95064
 ${ }^{9}$ Now at Max Planck Institute, Heidelberg, Germany
 ${ }^{3}$ University of Maryland, College Park, MD $20742{ }^{10}$ Now at Universite de Montpellier II, Montpellier, France
 ${ }^{4}$ George Mason University, Fairfax, VA $22030 \quad{ }^{11}$ Now at NASA Goddard Space Flight Center, Greenbelt, MD 21
 ${ }^{5}$ University of New Hampshire, Durham, NH $0382 \cdot{ }^{12}$ Now at Massachusetts Institute of Technology, Cambridge, MA
 ${ }^{6}$ New York University, New York, NY $10003 \quad{ }^{13}$ Now at Columbia University, New York, NY 10027
 ${ }^{7}$ Los Alamos National Laboratory, Los Alamos, NM

