# Diffuse Gamma Rays from External Galaxies

#### Vasiliki Pavlidou & Brian Fields University of Illinois at Urbana-Champaign

# Outline/Motivation

**#** Which gamma rays?  $p_{CR} + p_{ISM} \rightarrow p + p + \pi^{0}$   $\downarrow$  $\gamma + \gamma$ 



EGRET all-sky map above 100 MeV (EGRET team)

- Local Group galaxies: Detection as point sources by EGRET / GLAST
- Collective contribution from all galaxies to the diffuse gamma-ray background



Perform calculation for each LG galaxy...

# Detectability of LG Galaxies

| Galaxy | <b>"Best Guess" Prediction</b>                               | EGRET Value/Limit                                            |
|--------|--------------------------------------------------------------|--------------------------------------------------------------|
| 金汉之次   | (10 <sup>-8</sup> photons cm <sup>-2</sup> s <sup>-1</sup> ) | (10 <sup>-8</sup> photons cm <sup>-2</sup> s <sup>-1</sup> ) |
| LMC    | 11                                                           | 14.2 ± 2.2 (Hartman et al 1999)                              |
| SMC    | 1.7                                                          | < 4 (Lin et al 1996)                                         |
| M31    | 1.0                                                          | < 1.6 (Blom et al 1999)                                      |
| M33    | 0.11                                                         |                                                              |

Pavlidou & Fields (2001)

Associated uncertainty: ~ factor of 2

(dominated by uncertainty in MW SNR)

GLAST expected sensitivity:  $0.2 \times 10^{-8}$  photons cm<sup>-2</sup>s<sup>-1</sup>

(for a  $5\sigma$  detection after a 2-yr survey)

# **GLAST** Prospects

- Once measured, gamma-ray fluxes of LG galaxies can give cosmic-ray fluxes -> CR observations in extragalactic environments
- Once multiple galaxy detections exist, can test assumptions of model w/o inference to MW
- # Are energy spectra consistent w/ each other?

### Guaranteed Background Sources

- Normal galaxies, Blazars: only identified extragalactic sources detected by EGRET
- More exist that are unresolved ⇒ <u>guaranteed</u> to make contribution to diffuse gamma-ray background
- All other proposed background sources constrained by (observed - guaranteed) background

## Multiple Galaxy Calculation

gamma -ray flux of typical galaxy *higher* in the past because:

- 1. Star formation rate higher ⇒ more supernovae
  - $\Rightarrow$  larger cosmic ray flux



Cole et al 1991

2. Smaller fraction of baryons confined in stars

 ⇒ Larger gas fraction
 ⇒ More targets available

 use cosmic star formation rate to calculate both effects.

 normalize gamma -ray luminosity and spectrum to
 (observational) MW data

# Results/Comparison with EGRET

"guaranteed"
 2-component model
 for gamma-ray background :
 normal galaxy contribution +
 blazar contribution
 (Stecker & Salamon 1996)

Relative normal galaxy contribution: highest at ~ 1GeV ( about 1/3 of summed spectrum )



# **GLAST** Prospects

GLAST will test the 2-component model:

will resolve many more blazars but very few new normal galaxies ⇒ relative blazar contribution reduced ⇒ will detect normal galaxy peak at ~ 1 GeV



#### Conclusions

- GLAST will detect LMC, SMC, M31, maybe M33
   -> CR physics in extragalactic environments
- Normal galaxy contribution to extragalactic background: varies w/ energy, maximum at ~ 1GeV, ~ 1/3 of total
- GLAST will test if EGRET-measured background is mostly due to (a) unresolved point sources (blazars) or
   (b) truly diffuse sources
   (e.g. structure formation shocks)
- If (a) is true, GLAST might detect feature due to normal galaxies at ~ 1GeV