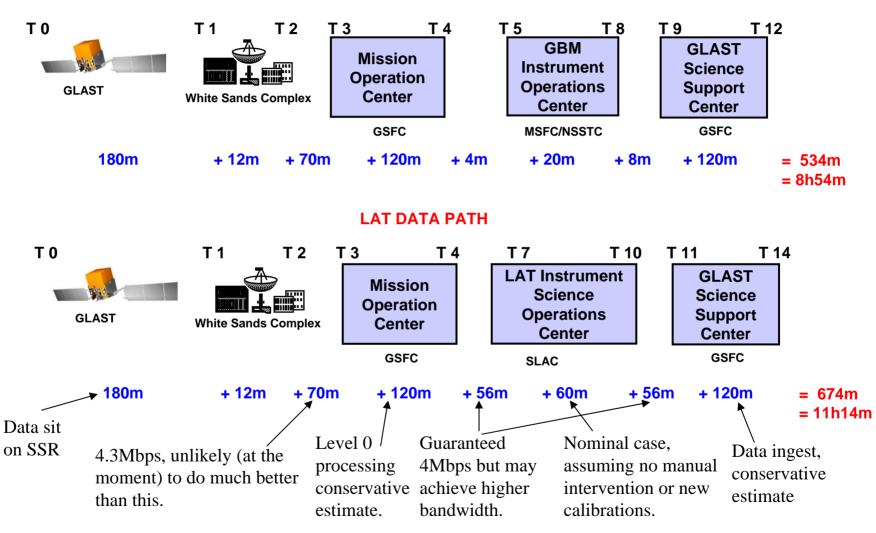
Science Data Latency


Julie McEnery

Requirements etc

- The ground system shall retrieve and process the science and GBM trigger data products within 72 hours 95% of the time.
- Comments: The time starts when the data are stored in the on-board SSR and ends once the level 1 data products have been generated at the LAT ISOC and GBM trigger files are generated at GIOC.
- The requirement was written when there was one data downlink per day and the LAT data rate was 300 kps. The original breakdown was 36 hours on-board, 12 hours to transfer to the IOCs and 24 hours to process level 0 to level 1 data.
- However, we now have ~8 downlinks/day so the on-board latency is greatly reduced. The data rate has increase by factor of ~4 so the time taken for each downlink to be processed has not decreased so much.
- "nominal" latency is considerably better than 72 hours, the design of the system is now sufficiently mature that we can get reasonable estimates of the actual performance (<12hours).

Longest Nominal Data Latency by Path (not requirements)

GBM DATA PATH

Assumptions

- Data is dumped every three hours eight times per day
 - It is likely that downlinks will NOT be scheduled exactly three hours apart but it is likely they will average three hours apart
- Data consist of
 - 1.2 Mbps LAT data
 - 26 kbps GBM data
 - 51 kbps HKPG data
 - No Diagnostic Data is generated
- L1 Volume is normally less than or equal to L0 Volume

- LAT data available at GSSC within ~11h.
- Level 2 processing (quicklook search for flares, bursts etc) available within ~9h30m (and could be much less than this)
- These are conservative estimates of the science data latencies in the nominal case, i.e. assuming that there was no manual (re)processing, missed TDRS contacts or data retransmission requests.

- Missing a scheduled TDRS contact
 - During a autonomous repoint there is a ~50% chance that we would miss a TDRS contact. This could occur up to 2 times for a 5 hour GRB observation adding up to 6 hours of latency.
- Calibrations, manual processing
 - The data processing pipeline at the LISOC will be sized to process a single downlink in one hour. However there is the potential for human intervention for calibrations which would delay delivery by several hours.
- Retransmission (either from the spacecraft, or some element of the ground system)
 - This is likely to be relatively uncommon.

Next Steps

- Investigate possible improvements from quasi-streaming approaches.
- Requirements are specified at 95% of cases, examine optimisation of the system at nominal performance.