The FLE and FHE detector modules are arranged in 8 horizontal layers of 12 small CsI crystals, with 4 in each vertical column. The front-end electronics (FEE) consists of a fast shaper with ~0.3 μs shaping time and two track-and-hold stages to produce nominal "x1" scale, which corresponds to ~1 MeV. The digital chain of each photodiode also includes a trigger circuit, after which closeout testing was undertaken.

The calibration and test procedure for each module is as follows:

1. **Environmental Testing**: Each module undergoes a full environmental test sequence, including temperature cycling, temperature shock, vibration, and acoustic testing. The test sequence is designed to ensure the module's performance under a wide range of environmental conditions.

2. **Performance Testing**:
 - **Trigger Response**: Each module undergoes tests to ensure its trigger response is within specifications.
 - **Gain and Linearity**: The gain and linearity of the module are measured to ensure they are within the specified range.
 - **Pedestal Stability**: The module's pedestal stability is measured to ensure it is consistent over time.
 - **Spectral Resolution**: The module's spectral resolution is measured to ensure it meets the required standards.

3. **Integration and Acceptance Testing**: The module is integrated into the LAT and undergoes acceptance testing to ensure it meets the performance requirements for spaceflight.

4. **Delivery to Mission Site**: After acceptance testing, the module is shipped to the mission site, where it is integrated into the LAT and undergoes final testing before being deployed into space.

The entire test sequence is designed to ensure the module's performance is consistent and meets all the required specifications for spaceflight.

Calorimeter Production and Performance

The calorimeter's performance is monitored throughout the test sequence. A variety of performance figures have been monitored, including:

- **Energy Response**: The energy response is monitored at various energy levels to ensure it is consistent across the energy range.
- **Resolution**: The energy resolution is measured to ensure it meets the required specifications.
- **Linearity**: The linearity of the energy response is monitored to ensure it is consistent over the energy range.
- **Pedestal Stability**: The pedestal stability is measured to ensure it is consistent over time.

These performance figures are used to ensure the module's performance is consistent and meets all the required specifications for spaceflight.

Conclusion

The GLAST/LAT CsI calorimeter is a critical component of the LAT, and its performance is critical to the mission's success. The test sequence is designed to ensure the module's performance is consistent and meets all the required specifications for spaceflight. The results of the test sequence are used to ensure the module's performance is consistent and meets all the required specifications for spaceflight.