GeV Observations of Star-forming Galaxies with the Fermi LAT

Marco Ajello and Keith Bechtol for the Fermi LAT Collaboration

219th AAS Meeting

10 January 2012
Key Science Questions

Origin and transport of cosmic rays (nuclei + electrons/positrons)

“Guaranteed” contribution of unresolved galaxies to extragalactic diffuse gamma-ray background

Hubble view towards the nuclear starburst of M82

Pavlidou & Fields 2002, reviewed by Dermer 2007
Context of Current Work

- **CGRO EGRET era (before 2008)**
 - Large Magellanic Cloud the only external galaxy detected in gamma rays

- **Fermi LAT + Imaging Air-Cherenkov Telescopes**
 - GeV and TeV detection of archetypal starburst galaxies M82 and NGC 253
 - GeV detection of quiescent Local Group galaxies M31, SMC

Gamma-ray Luminosity

\(> 0.1 \text{ GeV} \)

Best-fit scaling index

\[1.4 \pm 0.3 \] (solid)

Linear scaling

(dashed)

“Population Study”

- Selected for IR brightness and dense molecular gas content
 - Molecular gas as fuel for star formation, traced by HCN \((J=0-1)\) line emission (Gao & Solomon 2004)

- Galaxy sample (69 total)
 - 64 galaxies beyond Local Group
 - Combine with 5 previously studied Local Group galaxies

- *Fermi* LAT observations
 - 36 months
 - 0.1 – 100 GeV
 - 4 significant detections of starburst galaxies

- Identify galaxies hosting AGN as those detected by *Swift* BAT (14 – 195 keV)
SEDs of LAT-detected Starbursts

Preliminary
Comparative SEDs

Starbursts
- NGC 1068
- NGC 1068 (H.E.S.S.)
- M82
- M82 (VERITAS)
- NGC 4945
- NGC 253
- NGC 253 (H.E.S.S.)

Local Group
- Milky Way Global Model
- M31
- LMC
- SMC

Preliminary
Multiwavelength Relations

Gamma-ray vs radio continuum luminosity

Preliminary
Gamma-ray vs radio continuum luminosity ratio

Scaling index 1.10 ± 0.05

Scatter = 0.2 dex

(does not significantly change when removing galaxies with AGN)
Multiwavelength Relations

Gamma-ray vs total IR (8-1000μm) luminosity ratio

Ratio of energy output between wavebands

Scaling index 1.16 ± 0.07
Scatter = 0.3 dex

Removing galaxies with AGN
Scaling index 1.08 ± 0.10
Scatter = 0.3 dex

Not surprising given empirical correlation between IR and radio continuum luminosity
Correlation Significance

- Kendall τ coefficient (non-parametric, rank correlation test)
 - Generalized to include upper limits
- Compare coefficients of actual data and *observable* permutations
Correlation Significance

- Kendall τ coefficient (non-parametric, rank correlation test)
 - Generalized to include upper limits
- Compare coefficients of actual data and observable permutations

![Graph showing correlation analysis](image)
Correlation Significance

- Kendall τ coefficient (non-parametric, rank correlation test)
 - Generalized to include upper limits
- Compare coefficients of actual data and observable permutations

Correlation P-values of $< 10^{-5}$ considering all galaxies, $\sim 10^{-3}$ after excluding Swift BAT detected AGN (including NGC 1068 and NGC 4945)

Assume 20% distance uncertainty
Physics of Cosmic Rays

- Gamma-ray luminosity scales almost linearly with photometric estimates of the current SFR (total IR, radio continuum luminosity)
 - Covers at least 3 orders of magnitude ⇒ suggests CR luminosity related to short-lived massive stars

- Normalization of scaling relation provides constraint on product of cosmic-ray luminosity and efficiency of converting cosmic-ray energy to gamma rays
 - Check paradigm that SNRs are primary accelerators of cosmic rays in galaxies (interpreting gamma-rays as mostly hadronic in origin)
We know about the evolving cosmological population of star-forming galaxies thanks to deep multiwavelength surveys.
Consider two spectral models to bracket uncertainty. Shaded bands represent uncertainty in scaling relation parameters. EBL absorption (Franceschini et al. 2008).

Unresolved star-forming galaxies contribute 4-23% of isotropic diffuse component flux 0.1 – 100 GeV.
Anticipated LAT detections

- Scaling relation between gamma-ray and total IR luminosity (including dispersion ⇒ probabilistic)
- Assume point-source, power law spectrum with index 2.2
Anticipated LAT detections

- Scaling relation between gamma-ray and total IR luminosity (including dispersion \Rightarrow probabilistic)
- Assume point-source, power law spectrum with index 2.2

![Graph showing the detection probability over mission time for various galaxies.](image)
Take-away Points

1. Gamma-ray “population studies” of galaxies now possible

2. Confirm quasilinear scaling relation between gamma-ray luminosity and photometric tracers of SFR

3. Unresolved star-forming galaxies contribute 4-23% of isotropic diffuse component flux 0.1 – 100 GeV

4. Scaling relation would predict roughly 10 external galaxies to be detected during 10-year Fermi mission
Contribution to Isotropic Diffuse

Fraction compared to total contribution $0 < z < 2.5$

Largest contribution from analogs of Milky Way / M31 and startbursts similar to M82 / NGC 253
Contribution to Isotropic Diffuse

Fraction compared to total contribution $0 < z < 2.5$

Contribution from galaxies with $z > 1.5$ rapidly diminishing
Kendall τ correlation test details

- τ coefficient is sum of rank values ("H") over all pairs of points
 - $\tau=1$ corresponds to monotonically increasing data with no upper limits

Test can be generalized to include upper limits
X-ray selected radio-quiet Seyferts

- NGC 1068 and NGC 4945 are composite systems
 - *Gamma rays from AGN or cosmic rays?*
 - See Lenain et al. 2010

- Parallel *Fermi* LAT analysis of radio-quiet Seyfert galaxies
 - 120 objects selected by *Swift* BAT hard X-ray flux (14-195 keV)
 - Same analysis conditions as for star-forming galaxies
 - Possible association of LAT sources with ESO 323-G077, NGC 6814
 - Could *not* establish as new gamma-ray source class

See talk by M. Hayashida
305.06 in “AGN, QSO, Blazars V”
Wednesday 11 Jan @ 10 am
Pair-Conversion Technique

Fermi Gamma-ray Space Telescope
(*Fermi*)

Large Area Telescope (LAT)
20 MeV to >300 GeV

Gamma-ray Burst Monitor (GBM)
Few keV to 30 MeV
LAT Detector Subsystems

Imaging Calorimeter
- 8.6 R.L.
- 1536 CsI crystals
- Hodoscopic (12 x 8 layers)

Precision Converter and Tracker
- Single sided SSD (40 cm, 228 um) ~ 80 m²
- W foil interleaved (12x3% RL, 4x18% RL)
- 18 xy planes
- 1.5 RL

Anti-Coincidence Detector
- 4% RL
- Segmented (89 plastic scintillator tiles, 8 ribbons)
- 0.9997 efficiency

(+ Data Acquisition System)
500 Hz sent to ground
- Launched 11 June 2008
- 3 years of successful operations
- Expected lifetime of 10+ years
Observation Modes

- **Sky-survey mode**
 - Normal operations mode
 - Full-sky every 2 orbits (~3 hrs)

- **Target of Opportunity**
 - Autonomous re-pointing for GRBs
 - Slew to keep target in FoV
 - Proposed pointed observations

Wide Field of View

- **LAT**: ~2.4 sr, 20% of sky
- **GBM**: Almost entire sky not occulted by Earth
Effective Area = geometric area × trigger efficiency × selection efficiency

Low Earth Orbit
Cosmic ray flux >10³ gamma ray flux
Fermi LAT Collaboration