Table of Contents:

• BAT Enables
• Versatile BAT
• BAT Sensitivity
• BAT to the Future

To my friend, David.
“That’s just the way it’s done.”
Burst Alert Telescope (BAT)

BAT Detector Array

- Coded Aperture Mask
- Graded-Z Shield
- Optical Bench
- Module Control Box
- Power Supply Box
- Radiator

BAT Characteristics

- E Range: 15 - 150 keV (12-300)
- E Resoln: 7 kev (5)
- Loc Resoln: 1-4 arcmin (1-4)
- PSF: 22 arcmin (21.8)
- 2 steradian field of view
- 32K CZT dets, 5200 cm²
- Autonomous operations
BAT Status

- 4.7 years and still doing fine.
- Still meeting all the Requirements.
- No hardware failures.
 - Except that LHP Heater Controller in 2005 (1 of 4 redundant).
- No degradation in any parameter:
 - GRB Detection Rate is constant.
 - Energy resolution is the same (7 KeV)
 - Increase in number of noisy detectors -- ~20%.
 - False triggers have decreased ("tuned" the trigger criteria).
BAT’s 3 Data Products

• GRBs
 – Stare mode
 • 439 from Dec 04 to July 9, 2009
 – 34 Short Hard Bursts
 – During slews
 • 11 in the 12 months of operations

• Hard X-ray Transients
 – The other things that go bump in the sky.
 – 10’s of triggered SGR events, 100’s untriggered.

• Hard X-ray Survey
 – AGN, Blazars, micro-quazars, BHs, …
BAT is Fast and Accurate

20% False positive on-board.
2% after real-time Ground processing.

50% w/in 18 sec.
75% w/in 40 sec.
90% w/in 175 sec.
Long delays caused by Malindi downlinks.
BAT Enables

- Because of the small error-circles in real time:
 - High redshift bursts:
 - Naked eye burst: 080319B
 - X-ray afterglow structure:
 - Flares
 - Plateau phase
Farthest Object in the Universe

GRB 090423
Z = 8.2
400 Myr

David Band Symposium, Jul09
An Even Farther Object ???

GRB 090709A

Maskweighted Lightcurve (1 s binning)

Counts/sec/det

Time since BAT trigger time [sec] (UT 2009–07–09T07:38:34.5)

Z = 10-ish ?!
BAT Enables

• Because of the small error-circles in real time:
• High redshift bursts:
• Naked eye burst: 080319B
• X-ray afterglow structure:
 – Flares
 – Plateau phase
GRB 080319B
First "naked-eye" Burst

Brightest Swift GRB: 25 ph/cm²/sec

\[z = 0.937 \ (7.5 \text{ G light yr}) \]

Peak brightness of 5.6 magnitudes!!
(10x brighter than 990123)

Pi of the Sky – still observing the “A” burst, caught “B” burst at edge of FOV.
BAT Enables

• Because of the small error-circles in real time:
 • High redshift bursts:
 • Naked eye burst: 080319B
• X-ray afterglow structure:
 – Flares
 – Plateau phase
Typical Swift X-ray Lightcurves

50% with bright early component

~40% with flares

David Band Symposium, Jul09
The Flexible BAT

• BAT is able to adapt to the unknown.
 – But a lot of that unknown was scoped by David Band during the BATSE era.

• Produces a series of information to the spacecraft, the other 2 instruments, and the ground.

• Trigger criteria that cover a large dynamic range of phase space: time, energy, detector regions, and background.

• Changeable trigger criteria.

• Changeable data products.
BAT Post-Launch Enhancements

• DONE:
 – BAT Slew Survey (capturing the event data).
 – Long Image-triggers (>64 sec) changed from Transients to GRB response. (Going for hi-z bursts)
 – Catalog source-class Swift Response control
 – AT slewing to Known-source Transients
 – Transient Monitor (lightcurves) (ground work)
 – Redshift Prediction (ground work)

• ALMOST DONE:
 – SubThreshold: the fainter, the farther.

• FUTURE:
 – Catalog source-by-source Swift Response control
Lightcurves & Transients

• All-sky monitoring of source variability.
• http://swift.gsfc.nasa.gov/docs/swift/results/transients/
• 718 objects monitored/public
 – ~114 are routinely/daily detectable by BAT.
• Pointing-by-pointing and Daily-average lightcurves
• 7 previously unknown sources (msec pulsar, 2 BH, …)
• ~68 ATELs published
• Future:
 – 2-day, 4-day, & 8-day averaged lightcurves.
 – Automating the search/discovery of transient behavior.
 – Into HEASARC
Example of NEW Source

- **Swift J1756.9-2508** msec pulsar
- Discovered in the Daily Image Mosaics
 - Lightcurve came afterwards.

![Graphs showing Swift J1756.9-2508 data with marks indicating Discovery.](image)
BAT Slew Survey (1of2)

- Harvard: Antonio Copete and Josh Grindlay (Harvard)
- Look for GRBs (& transients) when Swift is slewing (~15%).
- More sky coverage per day; each slew is 2-3x BAT FOV.
- Capture event-by-event data during slews:
 - 120 sec only (ie only part of the slew).
 - 40-60% of the slews each day.
- Somewhat better sensitivity due to systematics removal.
- Several trigger criteria:
 - single slew, and multi-slew time domains
 - Various Energy-band criteria: 15-50, 50-150, & 15-150 keV.
- Not real-time (hours delay).
New GCN Notice type for these detections: BAT_Slew_Pos

Discoveries:

- GRB 070326: “first light” (T+3.8 mo)
- GRB 080123: “flare” on the AT slew of a BAT-triggered burst (T+6 days)
- GRB 080130: essentially normal ops mode (T+11 hr)
- GRB 080605
- MXB 0656-072
- GRB 080613B
- GRB 080702B
- GRB or something else?
- GRB 081025
- GRB 081203B
- GRB 081211B
BAT to the Future

• Subthreshold bursts
 – Finds the bursts in the noise
 – Turning down the threshold: 6.5 --> ~5.6 sigma
 – Merit parameter controlled via scripts so the good Burst and Planned targets are not clobbered.
 – Shortened observation interval -- first orbit only.
 – XRT detection used to valid the good from the bad/noise.
 – Automated: Swift --> GCN --> U.Leicester --> GCN --> World
 – 2 GRBs in about 2 months of testing
 – Will go public in about a month
David Knew

- Understood the ramifications of BAT being softer than BATSE
 - The 15-150 keV vs 50-300 keV.
 - Lower E_Peaks, higher z.
- A little off on our low energy deficiency
 - But even we still do not understand that cause
- Predicted our sensitivity would be “around 90/yr”
 - We see 95/yr
How to do Autonomous Telescopes

Non-Robotic Telescope

Autonomous Robotic Telescope

David Band Symposium, Jul09
“That’s just the way it’s done”

David -- my friend.