AGN STUDIES WITH GLAST

Mitch Begelman
JILA, University of Colorado
UNIFIED PICTURE OF AGN

Generic features:
- Power supply: BH accretion
- Outflows: jets/winds/breezes
- Dependence on viewing angle: obscuration and/or Doppler beaming

Variations:
- Radiative efficiency of disk
- Prominence of relativistic jet: “blazars” (~10% AGN)
- Ambient radiation field: BL Lacs vs. quasars

Padovani & Urry
SITES OF AGN γ-RAY EMISSION

- BLAZAR JETS
 - Orientation - beaming
 - Intrinsic differences (mass-loading, composition, Γ)

- NON-BLAZAR JETS

- ACCRETION FLOW & JET-LAUNCHING REGION

- STEADY EMISSION

- FLARES
 - 66 disc. by EGRET
 - ~13 seen in TeV

- Hints from HESS
WHAT DO WE WANT TO KNOW?

• How do jets form?
 - Magnetic propulsion?
 - Driven by disk or BH spin?

• What are they made of?
 - Baryonic vs. pair plasma?

• How efficiently do they transport energy?
 - Bulk Lorentz factor
 - Dissipation: internal shocks vs. reconnection?
 - Particle acceleration mechanisms

• How do they interact with their surroundings?
 - Gas: Boundary layers, entrainment
 - Ambient radiation field
WHAT DO WE WANT TO KNOW?

• How do jets form?
• What are they made of?
• How efficiently do they transport energy?
• How do they interact with their surroundings?
BLAZARS

• “Two-component” spectrum
 - Lo freq. peak ranges from IR → X
 - Hi freq. peak at GeV → TeV
 - Both components can be hard
BROADBAND BLAZAR SPECTRA:
Two Components

Bright EGRET-detected GeV-blazar: 3C279
(Wehrle et al. 1998)

First TeV-emitting blazar: Mkn 421
(data from Macomb et al. 1995)
BLAZARS

• “Two-component” spectrum
 - Lo freq. peak ranges from \(<\ IR \Rightarrow X\)
 - Hi freq. peak at GeV \(\Rightarrow\) TeV
 - Both components can be hard

• Rapid variability
 - \(~1 \ day \ with\ EGRET,\ limited\ by\ sensitivity\)
 - Shorter var. seen at TeV in brightest cases
 - Light travel time argument \(\Rightarrow\) \(\gamma\ \gamma\) absorption of \(\gamma\)-rays
 - Avoid by Doppler beaming from \(\Gamma^\sim 10\) jet
 - Emission from \(R\sim\) lt-mo. can vary in \(~\) days

• Multi-\(\lambda\) correlations?
 - Sometimes - esp. shorter flares
 - Sub-mm/IR coverage poor
BROADBAND BLAZAR SPECTRA:
Two Components

Bright EGRET-detected GeV-blazar: 3C279
(Wehrle et al. 1998)

First TeV-emitting blazar: Mkn 421
(data from Macomb et al. 1995)
BLAZAR MODELING

- **“Best guess”:** Same electrons produce both peaks
 - Lo freq. peak \(\sim\) synch \((\text{IR} \Rightarrow \text{UV})\), synch. or IC \((X)\)
 - Hi freq. peak IC

- **Different sources of Compton seed photons**
 - Synchrotron Self–Compton (SSC) vs.
 - External Radiation Compton (ERC)
Fig. 2.—Geometry of the source. The radiating region, denoted by short cylinder of dimension a, moves along the jet with pattern Lorentz factor Γ_p. Underlying flow moves with Lorentz factor Γ, which may be different.

(Sikora, Begelman, and Rees 1994)
3C 279: Realization of an ERC Model

SIKORA, BEGELMAN, & REES 1994
BLAZAR MODELING

- “Best guess”: Same electrons produce both peaks
 - Lo freq. peak ~ synch (< IR ⇒ UV), synch. or IC (X)
 - Hi freq. peak IC
- Diff. sources of Compton seed photons
 - Synchrotron Self–Compton (SSC) vs.
 - External Radiation Compton (ERC)
- Distinguishing the models
 - Multi–wavelength correlations
 - Strong for SSC, weaker for ERC
 - Sikora bump
 - Time–lags: propagation of jet disturbances, mapping ambient radiation field
 - “Hadronic” models less likely, but not ruled out
2 CLASSES OF BLAZARS?

Inter-peak correlations:

WEAK

STRONG

<table>
<thead>
<tr>
<th>Wehrle et al. 1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUASAR: Strong ambient radiation</td>
</tr>
<tr>
<td>BL LAC: Weak ambient radiation</td>
</tr>
</tbody>
</table>

Macomb et al. 1995

 ERC?
 SSC?
WHAT CAN GLAST DO?

• Larger collecting area track flares on timescales < 1 day
• Wide FOV continuous monitoring of many sources, better chance to catch flares in multiple bands (e.g., if X-ray precursor is spotted)
• Overlap with groundbased TeV arrays
 - Better handle on absorption by NIRB
 - Klein–Nishina effects?
 • Constrain Comptonization models
 • Leptonic vs. Hadronic models
NON-BLAZAR JETS

• “Quiescent” emission from beamed jets
 - Need higher sensitivity than EGRET
 - TeV evidence from HESS
 - Clues to underlying jet physics (MHD turbulence vs. shock heating, boundary layers…)

• “Unbeamed” jets
 - Test unification: FR I → BL Lacs, FR II quasars

• Diagnose beaming patterns
 - Do “misaligned” jets sometimes spray relativistic matter in our direction?
 - HESS: rapid TeV variability in M87
So far, γ-ray astronomy has probed AGNs on 0.1 pc scales. Can GLAST extend our view spatially?

• Central engines & jet launching pads
 - Scales ∼ 100 AU
 - Need sufficiently low compactness - radiatively inefficient accretion flows
 - HESS: rapid TeV variability in M87

• Kpc-scale jets
 - Chandra saw surprisingly large X-ray emission from extended regions in jets - mechanism controversial
 - Sites likely “hotspots”: internal shocks, collisions with obstacles
SUMMARY

• GLAST will provide key insights into the physics of relativistic jets from AGNs...

• On blazar (pc) scales...
 - Will go well beyond EGRET to explore faster variability, non-flaring emission
 - Need adequate multi-wavelength coverage
 - Link to groundbased TeV experiments

• May reveal new energetic phenomena...
 - Scales ranging from the inner accretion fbw to kpc scales