AGN STUDIES WITH GLAST

Mitch Begelman JILA, University of Colorado

UNIFIED PICTURE OF AGN

Generic features:

- Power supply: BH accretion
- Outflows: jets/winds/breezes
- Dependence on viewing angle: obscuration and/or Doppler beaming

Variations:

- Radiative efficiency of disk
- Prominence of relativistic jet: "blazars" (~10% AGN)
- Ambient radiation field: BL Lacs vs. quasars

Padovani & Urry

SITES OF AGN Y-RAY EMISSION

FLARES

66 disc. by EGRET ~13 seen in TeV

BLAZAR JETS

Orientation – beaming

Intrinsic differences (mass-loading, composition, Γ) STEADY EMISSION

NON-BLAZAR JETS

Hints from HESS

ACCRETION FLOW & JET-LAUNCHING REGION

WHAT DO WE WANT TO KNOW?

- How do jets form?
 - Magnetic propulsion?
 - Driven by disk or BH spin?
- What are they made of?
 - Baryonic vs. pair plasma?
- How efficiently do they transport energy?
 - Bulk Lorentz factor
 - Dissipation: internal shocks vs. reconnection?
 - Particle acceleration mechanisms
- How do they interact with their surroundings?
 - Gas: Boundary layers, entrainment
 - Ambient radiation field

WHAT DO WE WANT TO KNOW?

•How do jets form?

•What are they made of?

•How efficiently do they transport energy?

•How do they interact with their surroundings?

BLAZARS

- "Two-component" spectrum
 - Lo freq. peak ranges from $\langle IR \Rightarrow X$
 - Hi freq. peak at GeV \Rightarrow TeV
 - Both components can be hard

BROADBAND BLAZAR SPECTRA: Two Components

Bright EGRET-detected GeV-blazar: 3C279 (Wehrle et al. 1998) **First TeV-emitting blazar: Mkn 421** (data from Macomb et al. 1995)

BLAZARS

- "Two-component" spectrum
 - Lo freq. peak ranges from $\langle IR \Rightarrow X$
 - Hi freq. peak at GeV \Rightarrow TeV
 - Both components can be hard
- Rapid variability
 - ~1 day with EGRET, limited by sensitivity
 - Shorter var. seen at TeV in brightest cases
 - Light travel time argument $\Rightarrow \gamma \gamma$ absorption of γ -rays
 - \cdot Avoid by Doppler beaming from Γ ~10 jet
 - Emission from R[~] It-mo. can vary in [~] days
- Multi-λ correlations?
 - Sometimes esp. shorter f ares
 - Sub-mm/IR coverage poor

BROADBAND BLAZAR SPECTRA: Two Components

Bright EGRET-detected GeV-blazar: 3C279 (Wehrle et al. 1998) **First TeV-emitting blazar: Mkn 421** (data from Macomb et al. 1995)

BLAZAR MODELING

- "Best guess": Same electrons produce both peaks
 - Lo freq. peak \sim synch (< IR \Rightarrow UV), synch. or IC (X)
 - Hi freq. peak IC
- Different sources of Compton seed photons
 - Synchrotron Self-Compton (SSC)

VS.

- External Radiation Compton (ERC)

FIG. 2.—Geometry of the source. The radiating region, denoted by short cylinder of dimension a, moves along the jet with pattern Lorentz factor Γ_p . Underlying flow moves with Lorentz factor Γ , which may be different.

(Sikora, Begelman, and Rees 1994)

ERC vs. SSC

3C 279: Realization of an ERC Model

BLAZAR MODELING

- "Best guess": Same electrons produce both peaks
 - Lo freq. peak \sim synch (< IR \Rightarrow UV), synch. or IC (X)
 - Hi freq. peak IC
- Diff. sources of Compton seed photons
 - Synchrotron Self-Compton (SSC)

VS.

- External Radiation Compton (ERC)
- Distinguishing the models
 - Multi-wavelength correlations
 - Strong for SSC, weaker for ERC
 - Sikora bump
 - Time-lags: propagation of jet disturbances, mapping ambient radiation field
 - "Hadronic" models less likely, but not ruled out

2 CLASSES OF BLAZARS?

Inter-peak correlations:

WEAK

STRONG

(Wehrle et al. 1998)

QUASAR: Strong ambient radiation ERC? (Macomb et al. 1995)

BL LAC: Weak ambient radiation SSC?

WHAT CAN GLAST DO?

- Larger collecting area track flares on timescales < 1 day
- Overlap with groundbased TeV arrays
 - Better handle on absorption by NIRB
 - Klein-Nishina effects?
 - Constrain Comptonization models
 - Leptonic vs. Hadronic models

NON-BLAZAR JETS

- "Quiescent" emission from beamed jets
 - Need higher sensitivity than EGRET
 - TeV evidence from HESS
 - Clues to underlying jet physics (MHD turbulence vs. shock heating, boundary layers…)
- "Unbeamed" jets
 - Test unification: FR BL Lacs, FR quasars
- Diagnose beaming patterns
 - Do "misaligned" jets sometimes spray relativistic matter in our direction?
 - HESS: rapid TeV variability in M87

OUTWARD/INWARD BOUND

- So far, γ-ray astronomy has probed AGNs on 0.1 pc scales. Can GLAST extend our view
- spatially?Central engines & jet launching pads
 - Scales ~100AU
 - Need sufficiently low compactness radiatively inefficient accretion flows
 - HESS: rapid TeV variability in M87
- Kpc-scale jets
 - Chandra saw surprisingly large X-ray emission from extended regions in jets - mechanism controversial
 - Sites likely "hotspots": internal shocks, collisions with obstacles

SUMMARY

- GLAST will provide key insights into the physics of relativistic jets from AGNs...
- On blazar (pc) scales...
 - Will go well beyond EGRET to explore faster variability, non-f bring emission
 - Need adequate multi-wavelength coverage
 - Link to groundbased TeV experiments
- May reveal new energetic phenomena...
 - Scales ranging from the inner accretion f bw to kpc scales