

ATD Review 20 Mar 2000

GLAST Calorimeter ATD Program Review 20 March 2000

W. Neil Johnson Naval Research Lab

Calorimeter Technology Program

ATD Review 20 Mar 2000

- **D** Program Elements
 - Science performance verification and optimization through simulations examine several concepts and configurations.
 - CsI(Tl) and PIN photodiode detector module performance and packaging.
 - Low-power, analog and data acquisition electronics.
 - Mechanical design and packaging of the calorimeter.
- **D** Program Goals
 - Identification of key performance drivers
 - Full scale prototype
 - Beam test performance demonstration
- □ Major Participants
 - NRL (mgmt, detectors, electronics, assembly, GSE and test)
 - GSFC (custom analog ASIC design and test, simulations)
 - Hytec, Inc. (mechanical design and fab)
 - France IN2P3 (alternate concepts, simulations, beam tests)

Calorimeter Prototype Concept

ATD Review 20 Mar 2000

GLAST Calorimeter

- □ 8 layers of 10 CsI Crystals
 - Crystal dimensions: 30 x 23 x 310 mm
 - Hodoscopic stacking alternating orthogonal layers
- **D**ual PIN photodiode on each end of crystals.
- □ Mechanical packaging compression cell.

- Dual side-walls form stiff side support
- Inner side-wall holds compression (1 mm Al)
- Outer wall is EMI shield as well.
- **□** Electronics are supported between walls

Naval Research Lab Washington DC

Prototype Calorimeter Assembly

ATD Review 20 Mar 2000

Derived Calorimeter Requirements

ATD Review 20 Mar 2000

GLAST Calorimeter

Calorimeter Depth	10 (8.5) radiation lengths
Number of CsI Crystals	80 (96) (8 layers of 10 [12])
Crystal Dimensions	$30 \times 23 \times 310 \text{ mm} (28 \times 20 \times 352)$
Number of Electronics Channels:	320 (384) / tower (each CsI xtal, both ends, 2 PIN
	each)
Dynamic Range:	$5 \ge 10^5$ (noise to max signal)
Noise goal:	1 MeV RMS $(3x10^3 e^{-})$
A to D Range:	~2 MeV – 100 GeV
Trigger Rate: (GLAST)	Ave: 5500 Hz (2000 Hz w/ ADC veto)
	Peak: 9000 Hz (3400 Hz w/ ACD veto)
Self trigger delay:	< 1 µsec
Trigger Dead time:	20 µsec
Power:	5 (6) watts / tower (conditioned)
Mass	~ 98 kg/ tower
Nominal Operating Temperature	$\sim 0 - 10 \deg C$, in orbit
	$\sim 0 - 30 \deg C$, in ground test
Storage Temperature Range	~ -20 to $+50$ deg C
(survival range)	

Numbers in parenthesis (red) are for flight design 38-cm towers.

Derived Calorimeter Requirements (Divide and Conquer)

ATD Review 20 Mar 2000

- Achieve dynamic range with 4 PIN diodes per log and 2 gain ranges in preamp and subsequent processing (640 chans/tower)
 - Low Energy Range: 2 800 MeV
 - High Energy Range: 100 MeV 100 GeV
- **Custom front end ASIC**
 - 1 preamp, 3 shaping amps, 2 peak/hold per PIN
 - mux'ed output to ADC
- □ Use COTS (commercial off the shelf) ADC
 - 12 bit, successive approximation
- □ The dual PIN photodiode for GLAST from Hamamatsu.
 - Based on 3590 PIN, 180 µm thick (active)
 - Package is 15.5 mm x 16.5 mm ceramic carrier
 - Large diode area 96 mm², ~70 pf
 - Small diode area 24 mm^2 , < 20 pf
 - Ceramic carrier has been selected for lowest noise and cross-talk

Custom Dual PIN 96 / 24 mm Areas

Positioning with Light Asymmetry

ATD Review 20 Mar 2000

- Improve energy resolution by shower profile fitting.
- Imaging events without supporting tracker direction.

CsI Crystal Selection

ATD Review 20 Mar 2000

- Identify sources of CsI crystals and their ability to deliver material to specification.
 - Two vendors (Crismatec & ISC Kharkov) were used, both found acceptable.
 - 90 crystals purchased and tested.
- Map crystal response as a function of position.
 - ²²Na source scanned along length of crystal.
 - Red-sensitive PMTs at both ends.
 - Fully automated scanner acquires map in 40 minutes.
 - After required processing, the light yield of the ISC Kharkov crystals were indistinguishable from the Crismatec crystals.

- Identify controlling parameters for light attenuation or light tapering along length of crystal.
 - ISC Kharkov crystals were polished. NRL applied light tapering with sanding.
 - Black ends improve light tapering uniformity at the expense of lost light.
- Test light yield for crystals of GLAST geometry and identify wrapping and packaging drivers to light yield.
 - Tetratek and Tyvek wraps best.
 - Don't wet surface.
 - No wrap is x2 loss in light.

CsI Light Yield vs Environment

- Determine environmental influence on light yield - temperature, radiation damage, compression aging.
 - 0.5% loss / deg C drop in temperature,
 - 25% loss of light after 10 kRad,
 - relatively quick loss of ~ 5-10% which then appears to stabilize.
- Study bonding techniques for PIN diode to crystals and impact on light yield.
 - Need bond air gap is x2 loss in light.
 - Hard epoxies are fine but problem w/ CTE of CsI over temperature bonds break.
 - Silicone pads best.

CsI Crystal Processing

ATD Review 20 Mar 2000

- □ Acceptance testing.
 - inspection, metrology.
 - light yield vs position w/ ²²Na source (PMT dry mount, both ends).
- Surface processing (Ukrainian crystals only, Crismatec delivered with light taper).
- □ Crystal resizing (Ukrainian only).
- □ End treatment.
 - blacken with aperture for PIN photodiode or
 - white Tetratek.
- **\Box** Light yield vs position w/ ²²Na source.
- □ Mount PIN photodiodes.
- □ Final optical wrap.
 - Tetratek (2 x 10 mil).
 - Aluminized mylar with adhesive.
- $\Box \quad \text{Muon testing (and } ^{228}\text{Th source).}$

Naval Research Lab

Washington DC

Distribution of Light Yields

- Light yield of Crismatec and Amcrys bars, with final surface treatment and final wrap.
 - Variation from bar to bar is small.
 - rms light yield in big PIN = 4%.
 - Crismatec and Amcrys bars are *indistinguishable*, despite the obvious difference in optical opacity: Crismatec bars are clear, while Amcrys bars are milky!
 - Mean yield
 - in $1 cm^2 PIN = 3000 e/MeV$.
 - in $\frac{1}{4}$ -cm² PIN = 750 e/MeV.
 - Note crystals with low yields in small PIN...

Distribution of Light Yields

- □ Some optical bonds to small PIN were poor.
 - Poor bonds not detected in bench checkout because ²²⁸Th photopeak is not detectable in small PIN.
 - Next time: check all bonds with muons immediately.
 - Fractional difference in yield in small PIN relative to corresponding big PIN:
 - $f = (4Y_{S} Y_{B}) / Y_{B}$
 - Factor of 4 accounts for difference in geometric area.
 - Rejected crystals based on this ratio, or placed them in top of BTEM calorimeter, where small PIN is less useful.

Distribution of Slopes (Light Attenuation Lengths)

ATD Review 20 Mar 2000

- Fit linear model to light yield as a function of position for each end of crystal.
- Crismatec and Amcrys bars with final surface treatment and wrap.
 - Mean slope = 1.5% per cm
 - rms of slope = 0.3% per cm (20% of mean slope)
 - Mean slope corresponds to end-to-end attenuation of ~0.4, i.e. response at far end is 40% of response at near end.

Naval Research Lab Washington DC

- Compression cell design provided by Hytec, Inc in collaboration with NRL.
- Design problem is dealing with large CTE of CsI relative to mechanical structure in expected temperature variations during ground handling, test, and launch.
- Solution: compression cell with elastomeric pads. Used extensively in CGRO/OSSE.
 - Compression is applied vertically.
 - Friction against rubber pads constrains the crystals horizontally. Side walls provide "backstop" in the event of motion.

Program: Fabricate two compression cells.

- Populate one with dummy crystals and perform acceptance level vibration testing.
- Build beam test prototype with other.

Mechanical Design (cont'd)

ATD Review 20 Mar 2000

1.6mm rubber layer, with stiffening membrane

- Top and bottom compression panels are honeycomb with facesheets
- □ Inner side-wall holds compression
- Rubber sheet with holes is placed above and below each layer to provide for thermal variation in CsI depth (CTE mismatch of x4).
- □ Al shim between layers of rubber is used to set initial compression.

Mechanical Assembly

- □ Crystals stacked with alignment fixture (Dummy crystals shown here.)
- Compression applied and shims are adjusted to get the correct compressed height.
- □ Side compression containment panels are attached. External compression is released.

Vibration Test Setup

ATD Review 20 Mar 2000

□ Vibration tests performed at NRL

2 axes - thrust axis (z-axis) using vertical shaker, transverse axis using horizontal shaker.

- 25 accelerometers
- Test fixture simulated mounting configuration for flight:
 - 4 points on bottom and 4 points on top
- □ Tests
 - low-level random
 - qualification level sine burst
 - random vibration levels as specified in the General Environmental Verification Specification (GEVS)

wnjohnson - Calorimeter ATD Program Review

Modal Analysis Results

GLAST Calorimeter

ATD Review 20 Mar 2000

	Matlab	E	xperiment	al
Mode	FREQ (HZ)	FREQ (HZ)	Damp Ratio	Quality Factor
1 st Trans Shear	88.1	91	9.3%	5.4
2 nd Trans Shear	172.5	187	1.9%	26.3
3 rd Trans Shear	251.2	292	6.1%	8.2
1 st Vertical (Accordian)	305.4	218.5	4.1%	12.2
2 nd Vertical (Accordian)	598.9	524	1.4%	35.7

Blue line is Experimental Transfer function and green line is estimated transfer function

Naval Research Lab Washington DC

ATD Review 20 Mar 2000

- GLAST Calorimeter
 - $\Box \quad \text{Large dynamic range } (\sim 3 \ge 10^5)$
 - break into multiple gain ranges 2 PINs per crystal end
 - custom ASIC that breaks each PIN signal into two gain ranges to get desired ADC resolution on each.
 - Total of four gain ranges covering 2 MeV 300 GeV
 - □ Low power allocation per detector (~30 mW per crystal end including digital readout)
 - custom CMOS ASIC for front end analog processing
 - COTS low-power successive approximation ADCs
 - □ Low event processing time (dead time) requirement (< 20μ sec)
 - simultaneous digitization of 160 signals from the crystal ends.
 - High bandwidth transfer to DAQ using multiple serial links.
 - □ Performance monitoring and Calibration on the ground and in orbit.
 - Internal charge injection calibration system
 - test gain setting
 - low threshold for cosmic muon testing
 - in flight calibration with high Z cosmic rays.

Analog ASIC Signal Chain

Prototype Calorimeter Trigger Event Data Readout

ATD Review 20 Mar 2000

- 160 ADCs readout simultaneously to cal controller
 - Xfer time ~ $3.5 \ \mu sec (3 4 \ MHz)$
 - form 20 "columns" of 8 ADC values with flags
- 20 Columns transferred simultaneously to DAQ
 - 128 bit messages at 20 MHz (6.4 µsec)
 - transfer can overlap acquisition of new event
- DAQ I/F merges 20 columns into ordered sequence of 160 16-bit words
 - load into event buffering FIFOs
- DAQ performs event sparsification for readout

AFEE Circuit Card

ATD Review 20 Mar 2000

- □ 16 Layer board
- 40 CsICAL ASICs, 80 PIN diodes connections
- □ 10 V-I/I-V ASICs
- **4**0 ADCs
- **D** 16 DACs
- □ Misc buffers, biasing, filters
- □ 5 Nanonics connectors
- □ Total of ~ 1400 components on both sides.

Dead Time

GLAST Calorimeter

Front End Data Capture - BB

ATD Review 20 Mar 2000

wnjohnson - Calorimeter ATD Program Review

Partially Assembled BTEM Calorimeter

ATD Review 20 Mar 2000

Assembled Calorimeter

ATD Review 20 Mar 2000

□ Completed Assembly

- mass: 98 kg
- power: 5 watts

Tracking cosmic muons

			X-	+/x-(0/2)			(y+	+) >>	300000			Y	+/1-(1/3)			(x+	F) >>
ent 1	ID:	215	5480 1	Range	; 0	Size:	85 Ve	rsior	1: 20	00 Log(count	; 0				10100-001	-		
					1				1	8	0	0	11	6	519	72	0	1	- 5
			_							2	1	13	10	0	423	60	16	7	100
0	2	3	1	0	6	371	0	0	2	10									
9	0	24	4	0	10	284	4	6	8										
					1					3	17	0	161	243	11	0	0	0	- 9
										17	0	0	146	208	4	0	0	7	
6	0	6	0	0	6	374	0	0	0										
0	7	1	0	4	2	335	0	0	3										
21915	10	1000	11916		-	1004.04.05	21816	01956	1	11	87	293	11	0	0	0	20	0	3
									11	10	67	295	16	8	21	0	8	4	100
3	4	0	0	4	350	5	0	1	2						0000000		1042	10100	
1	4	1	13	22	416	7	0	0	0										
									1	559	5	3	20	4	1	15	7	4	- 9
										553	0	0	0	1	12	13	15	1	13
3	6	4	0	5	330	0	0	0	10		-				1			-	
n	12	n	13	5	506	11	0	n	6										

Beam Test Performance

Ev	ent De	sin - C	AIC SI	E															- 1
	1925		1975	2+/2-	(0/2)	-	7175		1+122	1735	2550			2+/2-	(1/1)				(+) >>
esit	10:		27229	Range	s: Ø.	Size:	115	/ersti	in: 11	LD LD	Coun	61 U		-	-	-	100	- 22	3:22
180		1018	1/254	5775	1312	3708	080	115	510	3594	3874	3917	3982	3939	2005	1420	2263	2482	1510
461	1472	38.68	2910	3835	7854	3128	1161	872	390	3813	19410	2820	1941	annu		-414-115	1991	4495	1.215
				-						3828	3017	3000	3930	3928	3004	3107	3940	1955	3897
28.49	1,121	7611	3915	1191	3808	3851	1795	2979	2849	2072	1901	7857	1909	7917	1911	1976	3899	1047	1915
1917	9816	31177	3800	1401	3845	1658	3843	\$\$55	1977	1000	0.1.7.1	2040	2624	2022	2010	1007	2010	100.0	2020
1001	1077	1770	179.1	1760	3754	2284	2725	3787	1.87.6	1507	21/1	AUDX	3856	3838	2047	1011	1001	1015	1019
1760	3816	3796	3837	3850	3869	3857	3817	2746	1646	6,724	22/7	2208	3336	3391	20.62	1241	1291	1239	1265
	28,13	2012	391.3	2443	151.17	California -	20.1.1			.400	911	1985	3912	3961	3862	1888	3971	1898	3936
\overline{m}	3833	3806	3,243	3791	3751	3815	3814	1508	1019	733	1167	3851	3945	3882	3917	1630	3815	3902	3897
1268	3815	2845	3864	3831	3818	3883	3815	1678	314	_									
incipt:	11:0		27229	Range	r; 1	2128	33.	Vec #11	in: It	1111	2010	-	No.	2001	1000	100	1646	1996	100
133	344	501	2656	3828	1943	877	192	150	138	1135	3040	3672	3030	3958	2576	1950	1010	748	602
110	370	175	3861	3885	1400	211	308	101	163					J. all		-			
	1000						-	A STORE		1107	\$171	3925	3842	3932	3876	1954	3426	1791	1177
713	1394	3133	3800	3816	3805	3463	1598	710	585	1177	21,39	3880	2946	3901	2916	1915	3554	1481	3247
714	1110	1717	3842	38.10	3850	1929	1814	824	482	1.01	2211	2022	10.12	2011	1010	104	1084	1071	1110
49.4	304	3814	3834	3760	3886	3704	1405	464	305	410	000	1615	4010	3030	3640	1011	1925	3013	1175
462	1404	1051	3810	1831	3838	BRAT	1963	970	444	-	-	11111	1010		1000		144.0		
				1000	2028					-108	252	491	968	R1B	3PH6	1946	3931	1914	199.1
679	1209	39.38	3803	3820	3824	3808	1460	384	174	194	383	010	1119	1991	3915	192.6	1593	1998	3602
454	1115	3140	3865	30.92	3831	3874	1199	:447	185	-			-						
rent.	3915		11229	Rapp	1.8	STER	위구.	Verst	en: 21	0,1 20	3547	2040	1426	178	110	1000	2.0	140	300
- 3	38	SB	39	2,698	123	62	28	-5	20	148	3912	3872	388	288	171	IDE	72	63	48
34	72	0	256	3845	30	31	1.8	13	1.9	1									
			1				_			90	166	325	3038	3892	018	3.53	-132	94	96
.66	- 19	165	1210	1008	729	129		- 64	17	103	182	.692	3975	3333	1055	.001	110	129	
- 44		- 191	1/41	3810	975	48	168	71	100	28	-80	1.67	321	1059	20111	10710	374	211	1011
65	68	10.1	1220	3817	1857	232	38	74	2.9	51	66	128	182	250	3006	1250	015	181	90
. 52	41	110	1770	3911	1398	202	1	57	30	1		1100	10000				and the second division of	(Caler	
- /		1.000	-		and the second	1224	- 11	- M	- 20	14	2,0	22	. 64	78	322	542	1001	682	10)
45	49	293	1267	38.65	1851	218	35	38	13	21	36	59	79	134	211	470	1405	618	122
0	-F2	152	965	2237	555	202	43	34	21					-					
1000			1413	hun3e	E1 - #	ATT6	60.	AGE 211	uni st	19	594	201	38	22	17		0		16
-11	1.5	8	.23	300	39	10	0.6	/ 1	0.6	11	595	704	70	42	17	15	14	10	
- 4	3	Ä	29	497	15	1	12	π	2	E				-			-	-	1
		_	1							11	24	- 77	1963	1169	138	50	: 49	. 14	-14
100	16	- 32	184	1530	129	18	.9		a	13	22	100	1678	1164	156	- 58	34	18	- 14
8		- 10	3.46	30.06	7.63	- 44		-10	30	18	1.4	2.9	de la	180	1974	302	373	. 10	.14
•	्य			100	159	49	14	18	- 0		.0	10	38	94	778	404	136	35	25
0 +	3	- 16	192	7410			12.2	1.12	1.4	-				-		-			-
0 + 13 5		16	192 174	1156	159	38	15			the second se	_						and the second se		
0 + 11 5	9 1)	16 29	193 174	1156	159	39	15			8	2	1	10	11	46	.76	142	90	44
0 + 13 5	1)	16 29 34	192 174 158	423	159	90	15	7	-	8	2	1	10 10	11 15	46 42	76 70	142 203	98 90	44 40

- Display shows all four energy ranges.
 - Both crystal ends are shown.
 - Color code indicates energy deposition.
- □ Incident beam is ~12 positrons in a single pulse from 20 GeV beam
- **\Box** Beam incident at ~ 50 deg angle

Naval Research Lab Washington DC

- □ Lowest range is saturated
- □ Highest range not saturated

Multi-Particle Energy Spectra

ATD Review 20 Mar 2000

GLAST Calorimeter

Running self-triggered

- See muons in low energy range
- See multiplicity of particles up to 600 GeV
 - Each peak in the lower two plots represents a integer multiplicity of positrons. Average multiplicity was varied between ~10 and 30 during this run of 10 GeV positrons.

Conclusions

- Design of calorimeter meets the requirements for flight system
- □ Some modifications to design are required
 - Calorimeter size and depth have changed in flight unit modest impact.
 - More functionality is required in analog ASIC digital control, internal DACs and autoranging to be designed by CEA/Saclay.
 - Compression adjustment capability prior to launch is desired.
 - PIN bonding with silicone pads requires modification to PIN mounting.
 - DAQ and interface to DAQ are under review; calorimeter data compression (zero suppression) is desired.
- Alternate mechanical design for the calorimeter is being considered -IN2P3/Ecole Polytechnique.

Naval Research Lab Washington DC