Outflows and relativistic jets in AGNs

G. Henri
Laboratoire d'Astrophysique de Grenoble
The two AGN classes

• Radio-quiet (Seyferts, QSO)
 - Relatively weak radio emission (but > normal galaxy)
 - No collimated jet (but bipolar flows, ionization cones)
 - No gamma-ray emission >MeV (Dermer & Gehrels ‘95)

• Radio-loud (Radio galaxies, quasars)
 - Intense radio Emission (synchrotron)
 - Powerful jets
 - Gamma-ray emission >MeV, up to tens of TeV...
Jets in radio-loud AGNs

- Large scale (>kpc) one or two sided
 - FR I weak jets, not well collimated
 • Beamed counterparts: BL Lacs?
 - FR II powerful jets, well collimated (hot spots)
 • Beamed counterparts: FSRQ?

- Superluminal motion observed at pc scale (VLBI/VLBA), always one-sided

 Apparent V between 5 and 10 c
 No clear difference between BL Lacs and FSRQ!
Superluminal motions

- Statistics on known sources (Vermeulen & Cohen ‘95)
- Compatible with a constant $\beta \sim 10$
- Some larger values discovered?
- Responsible also for Doppler boosting, enhanced variability...

GLAST-LAT Meeting GSFC 22-25 October 2002
Gamma-ray emitting blazars (grazars)

Gamma-ray luminosity can dominate the e.m. spectrum (10^{48} erg s$^{-1}$)

Strongly variable, often correlated with other wavelengths, but not in a simple way

GLAST-LAT Meeting GSFC 22-25 October 2002
Extreme blazars (>100 GeV)

Still more variable (<30?)

Extreme spectrum:
- Synchrotron peak in X rays dans les X
- Compton peak at TeV

Correlated variability

GLAST-LAT Meeting GSFC 22-25 October 2002
«Standard» model for gamma-ray emission

Gamma-ray opacity constraint: lower value of Bulk Lorentz factor, need for relativistic bulk motion

Leptonic processes favoured: Inverse Compton on synchrotron or external photons $e^-(\frac{\gamma mc^2}{2}) + h\nu \rightarrow e^-(\frac{\gamma' mc^2}{2}) + h\nu'$

Sources of soft photons
- accretion disk
- optical lines
- synchrotron (SSC)

Relativistic jet $\beta = 10$

Relativistic particles injection $\gamma^2 \approx 10^3 - 10^5$
Internal Shocks

GLAST-LAT Meeting GSFC 22-25 October 2002
Generation of relativistic jet?

Powerful jets can be extracted from accretion disks through Magneto-Hydrodynamical process (Blandford & Payne '82, Pelletier & Pudritz '92, Ferreira & Pelletier '93)

Referred also as «winds» or «outflows»

- Ideal MHD
- Resistive MHD
Self-similar Accretion Discs driving Jets (Ferreira, Pelletier...)

- \(B \approx \) equipartition
- Ejection efficiency \(\dot{M}_{\text{acc}} \propto r^{\boxed{0.01}} \)
Influence of ejection parameter

- Disc SED modified by ejection
 \[T_{\text{eff}} = r q \]
 \[q = \frac{3}{4} \]

- Jet terminal velocity
 \[V_{\text{jet}} = L_0 r_0 \sqrt{2 \theta} \]
 \[\theta = 1 + \frac{1}{2\sqrt{\theta}} \]

Low ejection efficiency \(\theta \) \(\Rightarrow \) powerful jets and disks

High ejection efficiency \(\theta \) \(\Rightarrow \) weak jets and disks
«Two flows» model

But Relativistic jets difficult to produce and collimate with equipartition $V_{\text{jet}} \approx V_{\text{Kepler}}$

No high g_b solution!

Two flows model : 2 distinct flows (Sol, Pelletier, Asséo 1985)

- MHD jet $e^- p^+$ mildly relativistic
- Highly relativistic pair plasma

GLAST-LAT Meeting GSFC 22-25 October 2002
Two-flow model

Account for some contradictions from small scale to large scale jets.

Example = 1928+134

- Two-sided jet @ kpc scale
- One sided jet @ pc scale
- Superluminal motion, $v_{app} = 6 \, c$

Either q is varying by $\sim 50^\circ$
Or q is varying from 7 to 1.08...
Bulk acceleration of pair plasma

- Compton effect transfers energy and impulsion

- In an anisotropic photon field, directed force (\sim radiation pressure)

- Vanishes in some frame due to relativistic aberration.

\[b < b_{\text{eq}} \quad \text{Frad} > 0 \quad \text{acceleration} \]

\[b = b_{\text{eq}} \quad \text{Frad} = 0 \quad \text{equilibrium} \]

\[b > b_{\text{eq}} \quad \text{Frad} < 0 \quad \text{braking (Compton drag)} \]
O'Deill's Compton Rocket effect

- In the vicinity of an accretion disk, γ_{eq} increases with the distance $r \sim (z/R_\text{g})^{1/4}$

Hot plasma: same γ_{eq} but the force is X by γ_{eq}^2
(Compton Rocket effect)
Saturation velocity is reached later and is larger

Cold pair plasma: γ_{b} increases but reaches a plateau when $T_{\text{acc}} > T_{\text{dyn}}$

$\gamma_{b} \sim \frac{T_{\text{soft}}}{4\mu m_{\text{e}} c^3 R}$

But cooling faster than acceleration (Phinney) !!
Rocket effect with continuous heating

- standard disk, \(L = \text{Ledd} \)
- power law distribution
 \(n(\ell) = n_0 \ell^{-s}, 1 < \ell < \ell_{\text{max}} \)
 (Renaud Henri 1998)

\[
M = 10^8 \text{ M}_{\odot}
\]

\[
M = 10 \text{ M}_{\odot}
\]
Generation of pair plasma

In situ generation of pair plasma

Feedback on gamma-ray emission
- Some relativistic particles
- X-ray and gamma-ray emission by IC and/or SSC
- e^+e^- annihilation forms new pairs
- Continuous reacceleration by MHD turbulence

- Processus must stop! Add a prescription on maximal random Lorentz factor, balancing an acceleration rate g_0 with synchrotron and Compton losses
Some results

• Spectral fits

Particle and disk photon density along the jet

Multiwavelength spectrum
Pair production threshold

- For a given geometry and B field, the solutions depend on initial particle density and the acceleration rate.

Very sharp transition of jet power when pair production starts: highly non-linear

Steady-state solutions probably unphysical, variability expected.
A time-dependent model

- Assume a time-dependent acceleration rate
- Parametrized by \(g_0(t) \)
- Assume \(\frac{d}{dt} g_0 = Q_{\text{inj}} - P_{\text{jet}} \)

\begin{align*}
\text{acceleration} & \quad \text{turbulence} & \quad \text{energy injection} \\
\text{e^+e^- pairs} & \quad \text{pair production} & \quad \text{pair production} \\
\text{quenching} & \quad \text{IC process/cooling} & \\
\end{align*}
Spontaneously variable solutions

For some values of Qinj (corresponding to the «wall(s)») time-dependent solutions exhibit spontaneous flaring behavior.

At least qualitative agreement with observations.
Flares associated with the ejection of discrete components
The particle distribution function

Spectra usually fitted with power laws

\[N(\mu_g) \propto \mu_g^{-s} \]

but sometimes in very narrow ranges

Extreme blazars can be fitted equally well with pile-up (quasi-Maxwellian) distributions

\[N(\mu_g) \propto \exp(-\mu_g/\mu_{\text{max}}) \]

More naturally predicted by bulk turbulence acceleration

Pian et al '98
\[S=1 \]
\[\mu_{\text{min}} = 4 \times 10^5 \]
\[\mu_{\text{max}} = 3 \times 10^6 \]
First results with pile-up distribution

Extremely sharp pair transition

Pair creation directly on synchrotron X-ray photons

Violent variability expected
Some conclusions

Pair model can reproduce the qualitative features and the quantitative SED of AGNs.

Need for simultaneous multi wavelength and time-resolved spectra to better test the models: leptonic/hadronic, homogeneous/inhomogeneous, pairs or not, particle distribution function...

High sensitivity and energy coverage of GLAST extremely valuable for temporal and spectral resolution, encourage multi-campaigns.