EGRET Likelihood Analysis and the g_{mult} and g_{bias} Parameters

Stanley D. Hunter

1

October 24, 2002

Likelihood Analysis Model

• The total model prediction for pixel *ij*

$$\theta_{ij} = g_{mult} \cdot G_{ij} + g_{bhas} \times 10^{-5} \cdot E_{ij} + c_a \cdot PSF(\alpha_a, \delta_a, i, j) + \sum_k c_k \cdot PSF(\alpha_k, \delta_k, i, j)$$

where c_a are the model counts for the 'active' source at α_a , δ_a , c_k are the model counts for the 'inactive' sources at α_k , δ_k , and $PSF(\alpha, \delta, i, j)$ is the fraction of the PSF located at α , δ that is in pixel *i*, *j*

• Ideal diffuse counts prediction

$$G_{ij} = \frac{\sum_{kl} E_{kl} \cdot \text{Diff}_model(k, l) \cdot PSF(\varphi_{ijkl})}{\sum_{kl} PSF(\varphi_{ijkl})}$$

where E_{ij} is the exposure [cm² s sr] at pixel *ij* and φ_{ijkl} is the angle between pixels *ij* and *kl*

(Mattox, et al. 1996, ApJ, 461, 396-407)

EGRET Likelihood Parameters

- $g_{\text{mult}} \approx 1.0$
 - small spatial scale 'correction' to the diffuse model, from e.g. unresolved point source contribution
 - $-g_{\text{mult}} \equiv 1$ if the diffuse model is correct
- $g_{\text{bias}} \approx 1.5 \ [\times 10^{-5} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1} \] \ (\text{E}\gamma > 100 \text{ MeV})$
 - the extragalactic diffuse emission
 - not included in the all-sky diffuse model
- $g_{\text{mult}}, g_{\text{bias}}$, and c_a were simultaneously estimated by maximum likelihood
 - likelihood program included analysis modes in which g_{mult} and/or g_{bias} could be fixed
 - typically both parameters were estimated

g_{mult} - E γ > 100 MeV

- From the analysis for the *Third EGRET Catalog* (Hartman et al. 1999, ApJS,123).
- Histogram of g_{mult} values is quasi-gaussian with a long tail to higher values. Mean is at ~0.9, slightly less than the expected value of 1.0.
- Regions near Gal plane where g_{mult} is >1.0 indicate regions of possible contribution from unresolved sources.

October 24, 2002

Correlation - Latitude Averages

Conclusions

- Near Galactic plane, g_{mult} is well determined.
 - Indication of unresolved point source in direction of local arm tangent points.
- At higher latitudes, where there is little structure to the Galactic diffuse emission, g_{mult} and g_{bias} are strongly anti-correlated.
- Analysis parameters need to be orthogonal.