

Agenda

- Overarching Approach & Strategy
- Classification Trees
- Sorting out Energies
- PSF Analysis
- Background Rejection
- Assessment

<u>A 3 Stage Approach</u>

- 1. Energy determination Foundational to what follows
- 2. Evaluate PSF's Background will be suppressed
- 3. Reject the Background The hard part

Statistical Tools: Classification Trees & Regression Trees

A Brief History of Resolution & Rejection

Preparing for DC1 is a LARGE TASK

- Not likely to get right the 1st, or the 2nd, or the 3rd, or.... time!

1st Time: April-May

Discover Mult-scattering in G4 "too good to believe!" Took till end of June to fix!

2nd Time: July (SAS Workshop) OOPS! The ACD geometry!

> 3rd Time: July-August Where did all the Run Numbers go?

> > 4th Time: August

Will Bill never stop changing variable - well at least he shouldn't make so many coding errors! Steve's variables added.

5th Time: August-September

Data of the day! But its certainly not "The rest of the story!"

6th Time: IS A <u>CHARM!</u>

Classification Tree Primer

Origin: Social Sciences - 1963

How a CT works is simple: A series of "cuts" parse the data into a "tree" like structure, where final nodes (leaves) are "pure"

A "traditional analysis" is just ONE path through such a tree.

A Simple Classification Tree

Tree are *much* more efficient!

Mechanism of tree generation less subject to "investigator basis." ST

4

STATISTICALLY HONEST!

GI AST

Bill Atwood, Rome, Sept, 2003

"Tree Production" automated by using "Training Samples" where the results are a priori known

All-Gammas (AG): 18 MeV < E_{γ} < 18 GeV 1/E Spectrum $-1 < \cos(\theta) < 0$ (2 π str) $A_{GEN} = 6 \text{ m}^2$

AG Total: 3/4 x 10⁶ Events CAL - Training 25% **PSF** - Training 50% BKG - Training/Testing 25%

Energy Filtering

Problem: The large gaps in the CAL and the thick layers of the Tracker compromise the energy determination.

Strategy: Identify poorly measured events and eliminate them.

Technique: Split events into classes and for each class use a Classification Tree to determine the well-measured events.

Energy Filtering (2)

GI AST

7

Energy Filtering (3)

All available variables bearing on the quality of the energy determination are made available to "train"

GI AST

Energy Filtering (4)

Energy Filtering (5)

PSF Filtering

Global Cuts:	
1) Cal.Prob > .50	(-18%)

Cleaning Cuts Applied to CT Training 2)EvtTkr1EChisq < 7.5 & EvtTkr1EFirstChisq < 10. & EvtTkr2EChisq < 10. & EvtTkr2EFirstChisq < 10 (-5.6%)

TOTAL LOSS: -22.5% (Training) -18% (Analysis)

GI AST

Thin / Thick Split: Best Track originates in Thin / Thick Radiators 48% Thin / 52% Thick

VTX / 1Tkr Split: Use CT to determine whether or not to use Recon VTX Solution

1 CT & 1 RT Used for each of the 4 PSF Classes: CT used to kill long tail RT used to sharpen CORE resolution

PSF Filtering: VTX/1Tkr Split

Only events with a VTX solution are considered (VtxAngle > 0)

Using MC Truth, the best solution is determined (for CT Training)

Mariginal Improvement: Purity (Before/After) 60% / 66% (See Discussion at end of talk) 000 000 \$ 8 0.0 4.5 0.4 0.0 14 1.0 0.0 9.2 0.6 0.0 14 10 POVES. Problems == */Trd 8.3 14 0.0 0.4 6.0 Problems == "(D(R))

Bill Atwood, Rome, Sept, 2003

Input Node - Filter Rows (1084)

		Predicted		Totale	
		1TKR	VTX.	rotais	
Observed	17KR	399	555	954	
observed	VTX	406	1052	1458	
Totals		805	1607	2412	

% Agree	41.8%	72.2%	60.2%

Positive Category - VTX Recall Precision F-Measure 72.2% 65.5% 68.6%

PSF Tails

13

"Tail" Events defined as being 2.3 × *PSF Model* or worse.

Improvement:

38% of the "Tail" is eliminated at expense of 13.5% of the "Core"

Input Node - Predict: VTX Class (1095)

	Predicted		Totals	
	CORE	TAIL	Totals	
CORE CORE	1244	195	1439	
Observed TAIL	104	64	168	
Totals	1348	259	1607	

	Obse	Overall	
	CORE	TAIL	Overall
% Agree	86.4%	38.1%	81.4%

Positive Category - CORE

Recall	Precision	F-Measure
86.4%	92.3%	89.3%

PSF CORE

Tool: Regression Tree (Similar to CT) Matches deviations rather then class types. Event-by-Event PSF Error

Energy Compensated by: $\frac{1}{E_{Meas}^{.8}}$

Collapse All PSF's onto one. Normalization: 1 = PSF(68) Sci. Req.

PSF Summary

Thin PSF's - <u>Integrated over FoV</u> 4 Combinations of Cuts (*CORE/Pred*)

PSF Summary - Minimum CORE Cut

PSFs given prior to Background Rejection due to lack of statistics

Background rejection does not change conclusions.

Limited statistics don't allow for good determination of PSF vs $cos(\theta)$ for tight cuts

Thick Radiator PSF

PSF(Thick) = 2 x PSF(Thin)

CORE Cut and Pred. CORE are adjusted to have similar effects as for Thin Radiators

GI AST

A_{eff} Summary - Minimum CORE Cut

Background Rejection

19

First Analysis Cut:

<u>Pre-Analysis Filtering</u> Done to reduce data volume

Require at least 1 Reconstructed Track

Require AcdActiveDist < -20 mm (AcdActiveDist defined to be distance to edge of nearest hit Acd Tile. Values < 0 indicate projected track falls OUTSIDE of hit tile area.)

Note: This has a built in Energy Dependence!

Generated: 50×10^6 Lost 10% from failed jobs: 45×10^6 Number of Triggers:~ 18.5×10^6 Number left after pre-filter:.73 $\times 10^6$

BGE sample divided in 2: 50% Training for CT's 50% Testing results (44652 Events in each)

> Remaining AG sample (25% of original) 50% Training (12.5% of original) 50% Testing (12.5% of original)

> > BGE's and AG's tagged and mixed randomly together for both Training and Testing

This leaves to few events to do much more then explore BGE Rejection problem areas. (i.e. 5629 AG's in each)

Background Rejection Program

Background Rejection Program - Pre Selection

			Pre Selection Cuts		Out of
	Low/Hi Energy	25.1% 1 Hz	EvtTkrEComptonRatio > .60 & CalMIPDiff > 60.	23.2% .04 Hz	27.4% (84.7%)
<u>AG</u> Fff	E > 350	1.0% 5 Hz	AcdTileCount == 0 & CalMIPDiff > -125 & EvtTkrEComptonRatio > .80	8.4% .08 Hz %	20.7% (40.6%) 6 in Blue show
			AcdTatalEnerous 608	R Sar	el. Eff. to Event nple in that Branch
<u>BGC</u> Rate		26.7% .3 Hz	EvtTkrComptonRatio > .70 & CalMIPDiff > 80. & CalLRmsRatio < 20.	23.1% .26 Hz	27.8% (83.1%)
	12.0% 9.0 Hz	AcdTileCount == 0 & EvtTkrComptonRatio > 1. & CalLRmsRatio > 5. & Tkr1FirstLayer != 0 & Tkr1FirstLayer < 15	5.5% .25 Hz	24.3% (22.6%)	

6828 AG's to start with.

Background Rejection Program - CT's

Bill Atwood, Rome, Sept, 2003

Background Rejection Program - CT Results

	Case	<u>CT Tree Disc.</u>		<u>Out of</u>
23.2% .04 Hz	Hi- E VTX (350 MeV)	Prob.Gam > .5	22.6% .01 Hz	27.4% (82.5%)
8.4% .08 Hz	Low-E	Prob.Gam > .9	5.0% .02 Hz	20.7% (24.2%)
23.1% .26 Hz	<u>Hi-E</u> 1Tkr (450 MeV)	Prob.Gam > .5	21.5% .02 Hz	27.8% (77.3%)
5.5% .25 Hz	Low-E	Prob.Gam > .9	1.8% .02 Hz	24.3% (7.4%)

Background Rejection Program - What's Left?

A_{eff} & BGE Rate: A_{eff} = 8400 cm² on Axis (E > 3 GeV) $A_{eff} \times \Delta \Omega$ = 2.0 m²-str BUT BGE Rate 5X too high 25

Bill Atwood, Rome, Sept, 2003

3 Classes of BGE Events Remain:

- 1) 1:1 Correlated Events ACD Leakage and inefficiency (.04 Hz)
- 2) 1: -1 Correlated Events Range-outs from below (.025 Hz)
- 3) Events at McZDir ~ 0 Horizontal Events (.005 Hz) Elimination Strategy
 - 1) ACD Leakage
 - Events found accurately;
 - Small phase space
 - Track projection to ACD cracks
 - 2) Range-outs MIP Identification in CAL

3) Horizontal Events - Edge CAL hits

Back to CT Basics

CT Tree Generation Mechanism:

Variable Selection

$$\frac{\langle good \rangle - \langle bad \rangle}{\sqrt{\sigma_{good}^2 + \sigma_{bad}^2}}$$

This is a FIRST ORDER TECHNIQUE

When MEANS are approx. equal it fails!

1. Characterize Distribution extents (tails) by Quantiles

Example: 95% containment PSF is the 95th Quantile of the PSF distribution

Alternative Variable Selection:Q(Good,95) - Q(Bad,95)Q(Good, 95) - Q(Bad, 95) or - normalized... $\sqrt{\sigma_{Good} \cdot \sigma_{Bad}}$ $N \cdot \log(N)$ $N \cdot \log(N)$ Use Genericfor cut placement.

- 2. CT Generation is a "one step look ahead" extend to 2,3, etc. steps
- 3. More Advanced CT Technologies Ensembles, Boosted Trees, etc.

1. Switch over to Onboard Flight Software Filter for "pruning"

2. Run at least 5X more events! In fact we should consider simply starting a regular MC production regime rather then the current "one-off" approach

Best ZDa

3. Explore alternative Variable Selection Mechanisms.

Conclusions

- Not there yet....
- CT/RT Technology Promising
- Need to condense various choices into data set(s) suitable for public consumption!