

Calorimeter Subsystem

Status and Issues

Benoît Lott CEN Bordeaux-Gradignan France

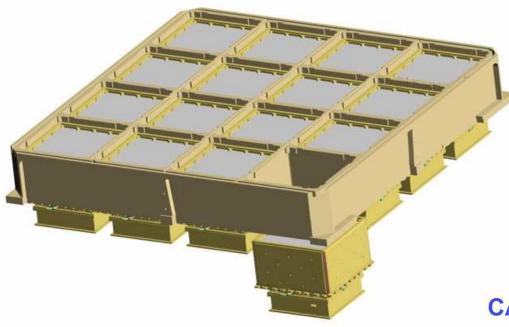
Slides: Neil Johnson & Eric Grove, NRL

0.000 x 0.000		
1.1.1.1.1.1.1		

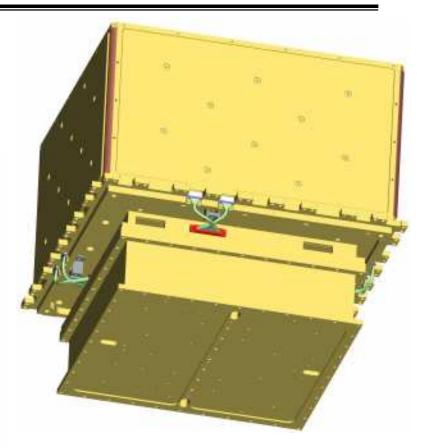
Benoît Lott

Collaboration Meeting Sep 15 – 17, 2003

Outline


- □ Introduction
- □ Subsystem Status
- **Engineering Model Construction and Test**
- □ Flight Manufacturing Status
- □ The Future
- □ Issues and Concerns
- □ Summary
- □ GSI & CERN beam tests

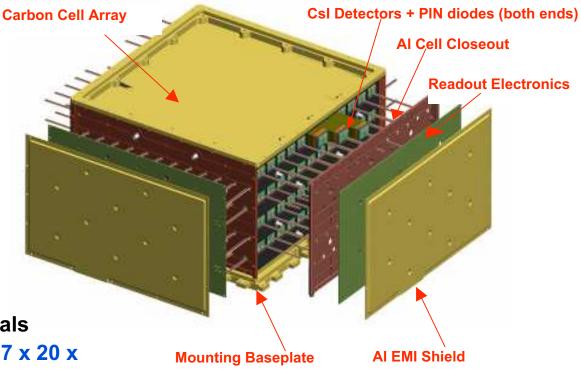
Collaboration Meeting Sep 15 – 17, 2003



Introduction - Modular Design

4 x 4 Array of Calorimeter Modules

LAT GRID with16 CAL Modules


CAL Module with TEM and Power Supply mounted to base plate

Calorimeter Module Overview

4 x 4 array of calorimeter modules

Each Module

- □ 8 layers of 12 Csl(Tl) Crystals
 - Crystal dimensions: 27 x 20 x 326 mm
 - Hodoscopic stacking alternating orthogonal layers
- Dual PIN photodiode on each end of crystals.
- Mechanical packaging Carbon Composite cell structure

- Electronics boards attached to each side.
- Electronic readout to connectors at base of calorimeter.
- Outer wall is EMI shield and provides structural stiffness as well.

CAL Level III Key Requirements

Reference: LAT-SS-00018

Parameter	Requirement	Verification	Expected Performance
Energy Range	20 MeV – 300 GeV 20 MeV – 1 TeV (goal)	Simulation, Beam Tests	Required performance
	5 MeV – 100 GeV, single crystal		~2 MeV threshold (BOM)
Energy Resolution (1 sigma)	< 20% (20 MeV < E < 100 MeV) < 10% (100 MeV < E < 10 GeV) < 6% (10 GeV < E < 300 GeV, incidence angle > 60 deg)	Simulations and EM and LAT calib unit Beam Tests	Simulations demonstrate required performance
Dead Time	< 100 ^{III} s per event < 20 ^{III} s per event (goal)	Test	< 19 ^{III} s per event
Low Energy Trigger High Energy Trigger	< 2 ^{III} s trigger latency	Test	< 1 🖟s
Mass	< 1440 kg (90.0 kg/module)	Test	1376 kg
Power	< 65 Watts (conditioned) (4.05 W/module)	Test	< 54 Watts (conditioned)
Temperature Range	 10 to +25 C, operational 20 to +40 C, storage 30 to +50 C, qualification 	Subsystem TV Test 4 cycles, acceptance 12 cycles, qualification	Required performance

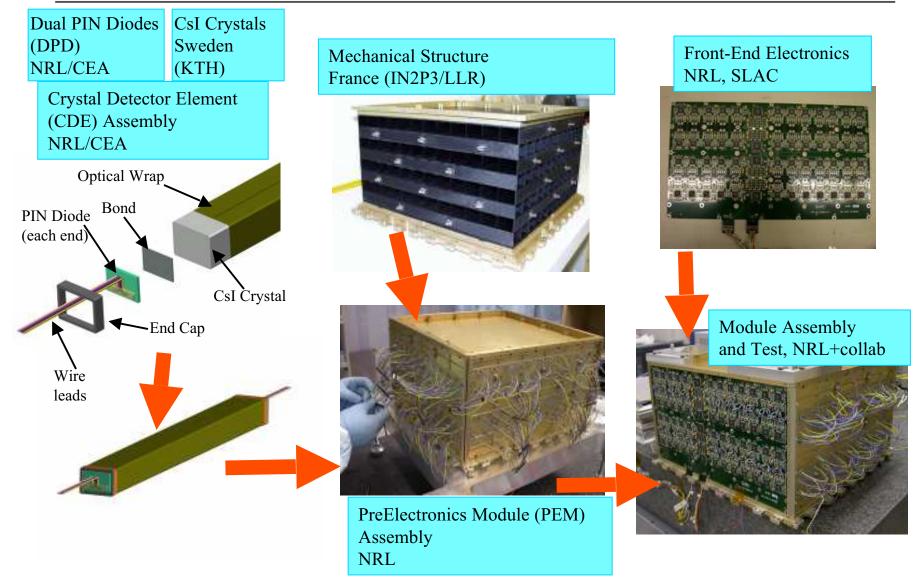
Status - Loss of CNES Support in France

- In April, CNES (the French Space Agency) announced their withdrawal from planned commitments to the French contributions to GLAST
- □ As a consequence, CEA and IN2P3 were forced to reduce their hardware contributions to CAL.
 - Purchase of PIN photodiodes and the manufacture of CDEs was transferred from CEA to NRL.
 - The machining of aluminum and titanium parts of the CAL structure were transferred from IN2P3 to NRL.
 - Manufacture of composite structure will continue with IN2P3.
- □ The cost and schedule impact of this change was presented to the LAT International Finance Committee and the US sponsors.
 - The revised program and responsibilities have been approved and we are in the process of re-baselining the LAT cost and schedule.

Revised CAL Team Roles for Flight

Organization	Flight Hardware Responsibility
Sweden	CsI Crystal procurement and acceptance test
France / IN2P3	 Mechanical Structure design. Carbon composite cell structures fabrication and test. Elastomer bumpers and cords. MGSE and tooling Finite element and thermal analyses. Beam Test Planning and Support
France / CEA	Diode and CDE manufacturing test benches. CDE shipping containers.
Naval Research Lab	 CAL Subsystem Management, System Engineering, & Mission Assurance. CDE manufacture and test. CAL Electronics Design & Fab, Digital ASIC design, CAL Module Assy & Test, LAT I&T Support
SLAC	CAL Analog ASIC Design, EM AFEE PCB layout

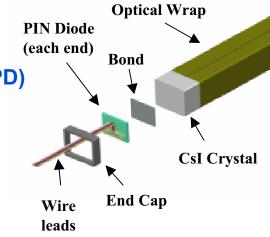
CAL Status


- CAL Subsystem successfully completed Peer Design Review (Mar ,03) and LAT Critical Design Review (May ,03).
- **Engineering Model CAL assembly was completed in March.**
- **Environmental testing of EM CAL was completed in July.**
 - Qualification level vibration tests
 - Qualification temperature Thermal Vac 8 cycles.
 - EMI/EMC testing
- EM CAL was shipped to SLAC for Integration and Test activities in August.
- **Design revisions for flight production are essentially complete**
 - Modified carbon composite structure manufacturing technique
 - Modified PIN Diode optical window
 - New GCFE (analog ASIC) version
 - Modified CAL base plate to accommodate new CAL-GRID interface requirements.
- Delivery of flight components is well underway

Collaboration Meeting Sep 15 – 17, 2003

GLAST LAT Project

Engineering Model CAL Manufacturing




Collaboration Meeting Sep 15 – 17, 2003

CDE Components

- **CDE** has four components
 - 1. Csl(Tl) crystal
 - 2. Two PhotoDiode Assemblies (PDAs)
 - Hamamatsu S8576-01 Dual PhotoDiode (DPD)
 - Wire leads, soldered and staked
 - 3. Wrapper
 - 3M Visual Mirror VM2000 film
 - 4. Two end caps

EM CDEs during wrapping and attachment of end caps

Collaboration Meeting Sep 15 – 17, 2003

Crystal Production - Sweden

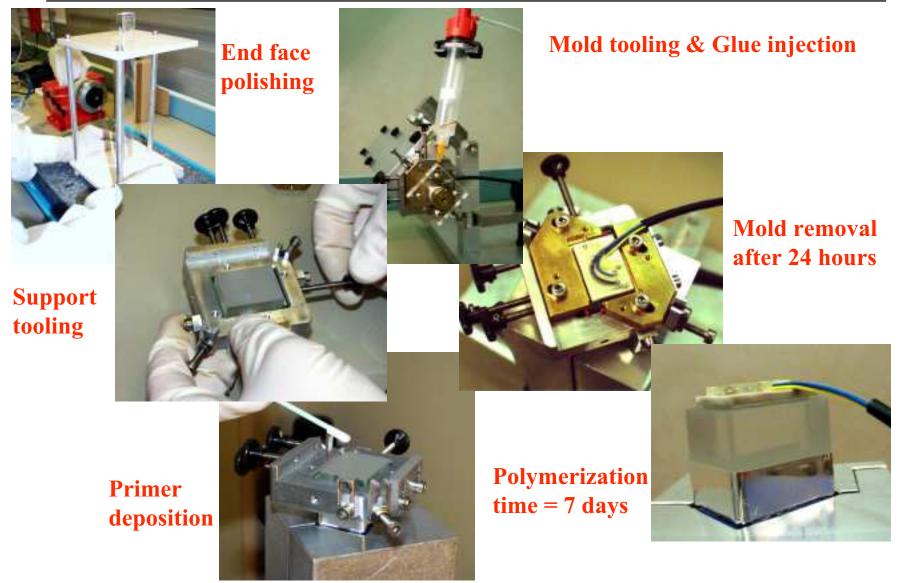
Crystal Mechanical and Optical Acceptance Testing

Benoît Lott

Calorimeter Subsystem Status

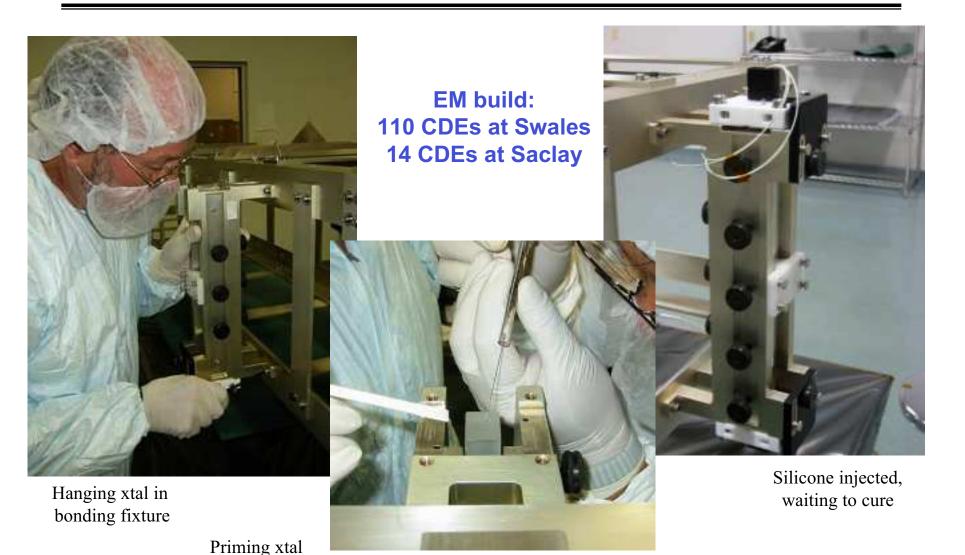
CsI(TI) Crystal and PIN Photodiode

- Csl(Tl) gives high light yield with PDs and good stopping power for EM showers
 - 1536 crystals or ~1200 kg of Csl, each 326 mm x 26.7 mm x 19.9 mm
 - 100% inspection and test


- PIN Photodiode spectral response well matched to CsI(TI) scintillation
 - Very small mass, volume, and power
 - Total 3072 required in LAT CAL
 - Two diodes to help cover dynamic range

EM Photodiode Assembly

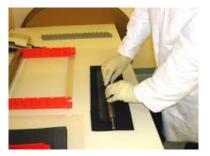
EM PDA-Crystal Bonding – CEA/France


Benoît Lott

Calorimeter Subsystem Status

Collaboration Meeting Sep 15 – 17, 2003

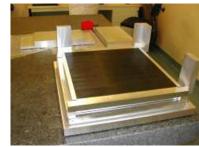
EM PDA-Crystal Bonding – Swales



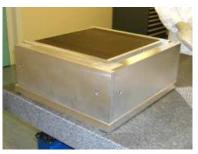
Composite Structure – LLR Ecole Polytechnique

Wrapping of Mandrels

GLAST LAT Project


•Each Mandrel Wrapped with One Pre-Preg Ply

Preparation of Layer


- Stacking of Mandrels and Lateral Lay-Ups with Inserts
- Mechanical Pressure to Add **Global Plies**

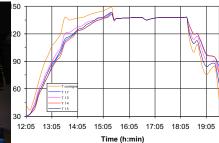
Stacking of Layers

•Stacking of Layers, Base and Top Lay-Ups with Inserts

Closing of Mold

- 4 Side Plates and Cover
- Mechanical Stops to **Control Outer Dimensions**

Metrology


- Outer Dimensions
- Position of Inserts
- Dimension of Cells

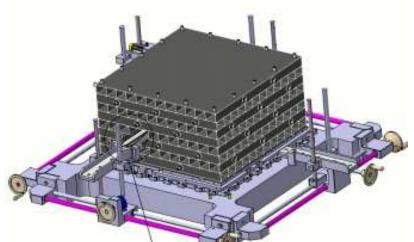
Vacuum Bagging

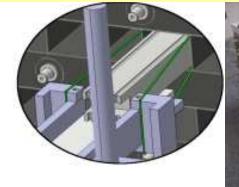
- Release Film
- Breather Felt
- Vacuum Bag

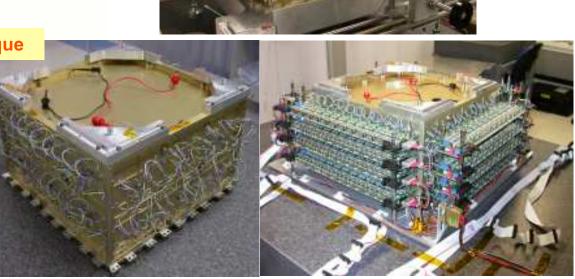
Autoclave Curing

- Temperature 135°C
- Pressure 7 bars
- Cure Time 4h

Structure Removal


- Removal of Layer Frame
- Removal of 96 Mandrels
- Cleaning


CDE Insertion into Structure

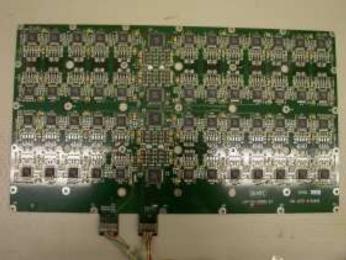


Pre Electronics Module (PEM) Assembly - NRL

Completed PEM

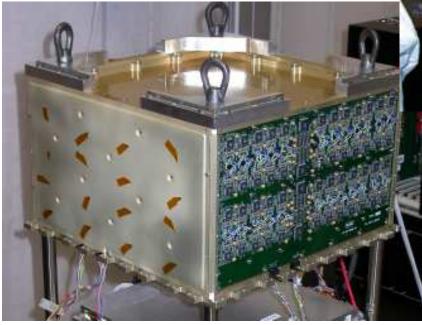
PEM Acceptance Test

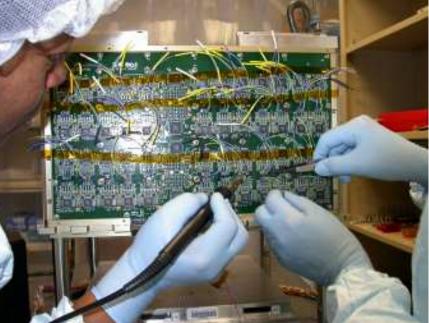
Collaboration Meeting Sep 15 – 17, 2003


GLAST LAT Project

CAL Electronics – NRL/SLAC

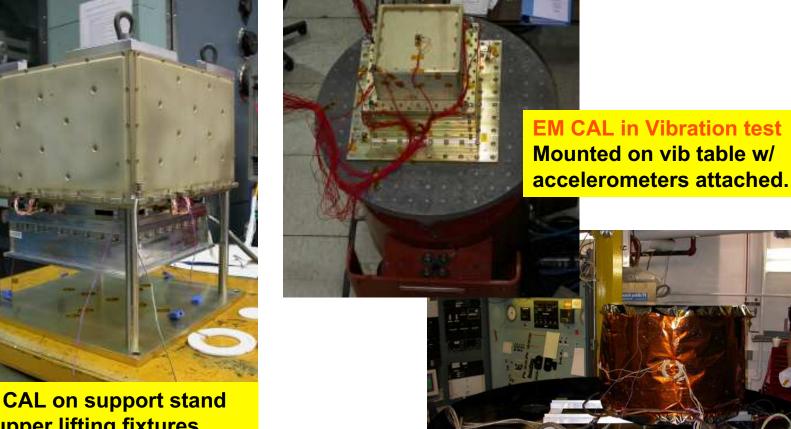
- Read out both ends of Csl crystals in hodoscopic array using PIN photodiodes
 - 4 printed circuit boards, one on each vertical face
 - Large dynamic range (few x 10⁵)
 - Low noise (~2000 electrons noise)
 - Low power (~20 mW per crystal end)
 - Low dead time (20 []s)
 - Self triggering
- □ Implementation
 - Divide dynamic range into two input signals (dual PIN photodiode)
 - Use 1 custom analog and 1 custom digital ASIC to minimize power
 - Use COTS 12-bit successive approximation ADC on each crystal end to achieve low dead time.
 - Sparsify data (zero suppress)


EM AFEE board


Collaboration Meeting Sep 15 – 17, 2003

AFEE Board Installation

- Route, dress and solder
 192 diode interconnect
 wires per AFEE board.
- □ Functional Test
- □ Stake wires
- □ Install Side Panels



Installation of EM AFEE boards

Collaboration Meeting Sep 15 – 17, 2003

EM CAL Testing

EM CAL on support stand w/ upper lifting fixtures attached

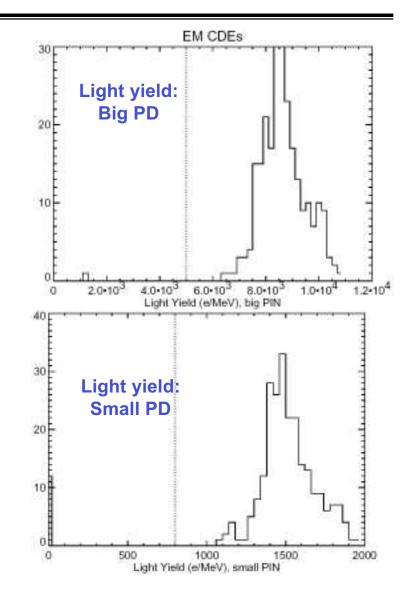
> EM CAL in TVAC Mounted on TVAC base covered w/ thermal shroud

Benoît Lott

Collaboration Meeting Sep 15 – 17, 2003

EM Calorimeter at SLAC

Collaboration Meeting Sep 15 – 17, 2003

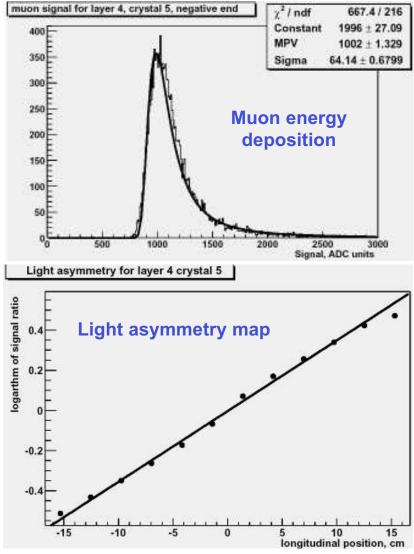


EM CDE Performance

- **EM CDE build**
 - 110 at Swales Aerospace
 - 14 at Saclay

Saclay and Swales CDEs have identical performance

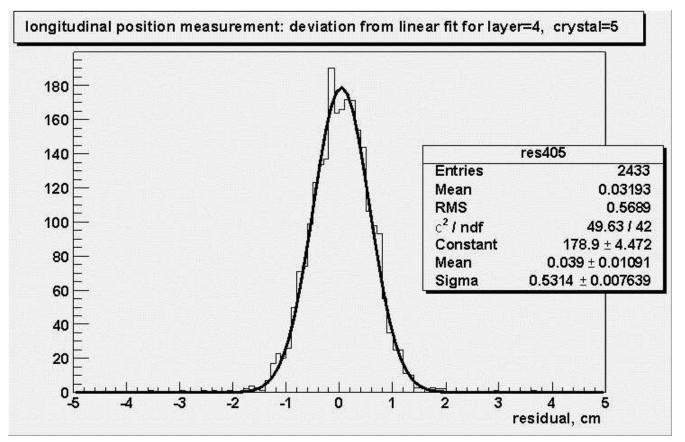
- □ Performance of EM CDEs
 - Light yield
 - Big PD within spec
 - Typical: 8000 e/MeV
 - EM Spec: >5000 e/MeV
 - Small PD within spec
 - Typical: 1500 e/MeV
 - EM Spec: >800 e/MeV



EM Pre-Electronics Module Performance

□ Performance of EM PEM

- Assembled PEM with GSE Checkout electronics
- >5 million muons collected
- Data being analyzed with Ground Science Analysis Software system
 - Muon trajectories imaged
 - CDE light tapers mapped



EM Module Imaging of Muon Tracks

- □ CAL muon position resolution using light tapering along the Csl log.
 - Light taper maps derived from CAL-only crystal hodoscope
 - No external hodoscopes!

5 mm resolution (rms)

Benoît Lott

Flight Manufacturing Status

- Csl Crystals
 - To date Kalmar has received 450 flight Csl xtals from Amcrys H. Of these, ~300 have been fully tested and shipped to NRL.
- DA Manufacturing
 - NRL has received ~600 flight Dual PIN photodiodes.
 - PDA manufacturing process tooling and specification have been completed. Manufacturing vendor has been selected.
 - PDAs for pre-qual CDE units are being manufactured at NRL.
- - More than 30 CDEs have been bonded at Swales for training and tooling tests.
 - 12 copies of flight CDE bonding tooling have been manufactured.
 - Remaining Flight CDE manufacturing tooling (38 copies) has been released for manufacture.

Flight Manufacturing Status (2)

Mechanical Structure

- Revised, reviewed and released flight machined part drawings all except base plate which requires review and approval by IPO.
- Manufactured Structural Model 1 (SM1) carbon composite structure using flight-like tooling and autoclave at LLR. 2nd structure will be made in October.

□ AFEE Electronics

- Screening, qualification and test boards for AFEE ASICs, ADCs, DACs have been completed.
- Flight ASICs have just been received from Mosis. Are now in packaging.
- Revisions to EM AFEE schematic have been completed, new layout is in progress. Prototype board expected this month.

Collaboration Meeting Sep 15 – 17, 2003

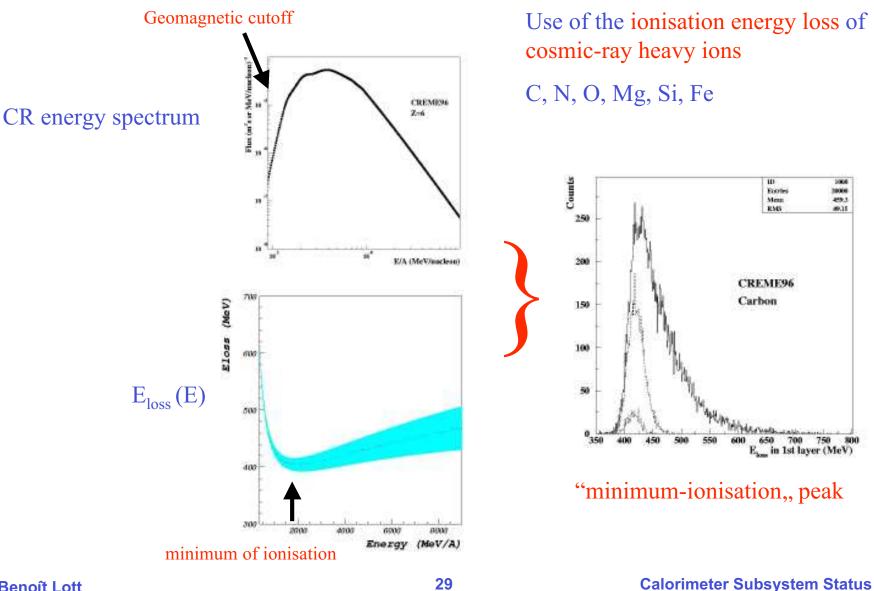
The Future

Nov 14, '03	Heavy ion beam test with EM CAL at GSI in Germany
Oct 15, '03	Start manufacture of flight CDE
Dec 25, '03	First PEM Assembled.
Feb 20, '04	First CAL Module Complete
May 28, '04	First CAL Module delivered to LAT I&T
Nov 02, '04	16 th CAL Module delivered to LAT I&T
Nov 16, '04	2 spare modules delivered to SLAC for beam test calibration

Issues and Concerns

- □ Calorimeter is critically dependent on plastic encapsulated microcircuits (~ 3300 ASICs, ~3000 ADCs and 250 DACs)
 - Screening and qualification of these will not be complete until Jan ,04.
- LAT-wide EMI/EMC design review may require modification / additions to CAL structure
 - A risk to the delivery schedule

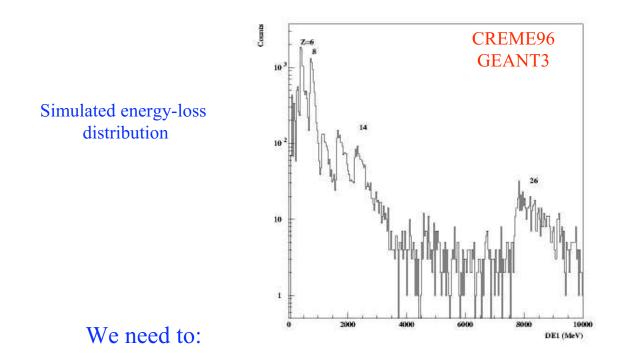
Summary


- Engineering Model CAL manufacture and test program has verified the CAL design and manufacturing processes.
 - A small number of component / process improvements have been made for flight.
 - EM CAL testing continues at SLAC as part of an integrated tower.
 - The EM will be tested at much higher energies at GSI with heavy ion beams.
- □ CAL module is expected to meet all its level III requirements.
- □ CAL has begun flight module manufacturing

"Damn the torpedoes, full speed ahead"

Collaboration Meeting Sep 15 – 17, 2003

In-orbit calibration



Benoît Lott

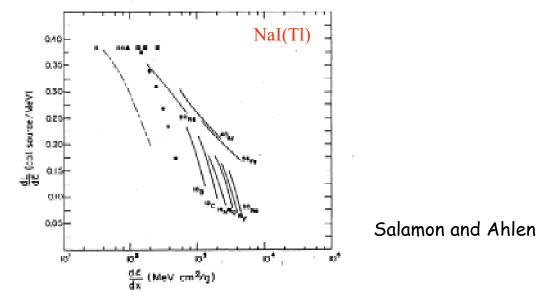
Collaboration Meeting Sep 15 – 17, 2003

In-orbit calibration (2)

• know the CsI light function L(E,Z), non-linear because of quenching effects;

• test algorithms for rejecting reaction events (variation of Eloss between adjacent layers).

Quenching effects in Csl

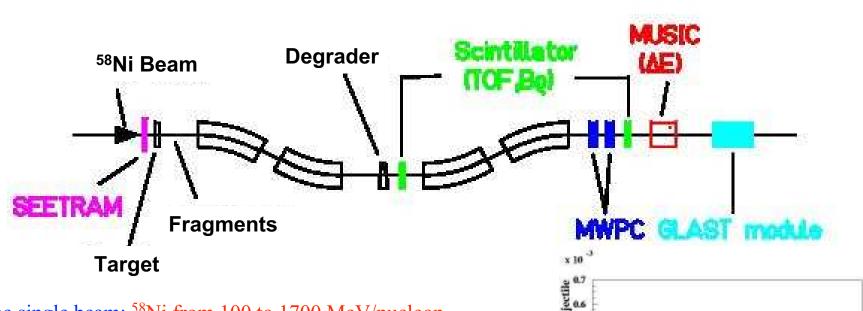

High ionisation density [] non-radiative decay channel ("activation-depletion,, hypothesis, exciton destruction at activator sites, recombination...) Low energy: Birk's formula

 $L(E) \square E/(1+k_B dE/dx)$ k_B: quenching factor

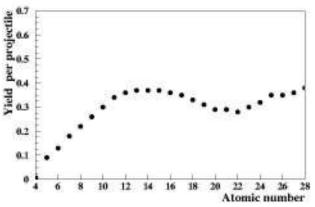
High energy:

at a given dE/dx, E is higher for greater Z [] more d electrons [] less quenching

Very scarce data at high energy!



Benoît Lott


Collaboration Meeting Sep 15 – 17, 2003

Experimental setup at GSI

One single beam: ⁵⁸Ni from 100 to 1700 MeV/nucleon All fragments are produced simultaneously. The spectrometer offers great flexibility!

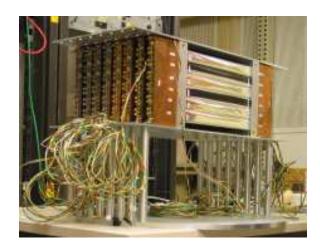
Why do a beam test at CERN?

The LAT will cover the 20 MeV-300 GeV range, but the calibration at SLAC will be limited to 30 GeV. Wouldn't be data at higher energies be useful? Although rare, photons with E>10 GeV will (arguably) be the most interesting, the 10 GeV-100 GeV domain has barely been explored.

Only little ressource is needed to get these data.

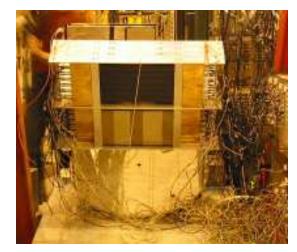
Our calorimeter is fairly thin: on-axis photons deposit only $\sim 40\%$ of their energy within the CAL: energy reconstruction for those is based on profile fitting. Surprisingly few data on shower profiles in the literature.

CERN is a good place: GLAST is an "accepted experiment,, at CERN. Different beams (secondary+tertiary) are available with a great flexibility: electrons, pions,muons with energies up to 150 (300) GeV, down to 10 GeV CERN shut down in 2005. Beam available for GLAST in 2004 (?)


Experimental Method

	1 week of beam time on the H6 beam line (Aug 7-13)
Detectors:	48 CDEs (AMCRYS): 8 Bordeaux, 15 CEA, 25 Kalmar+CEA arranged in 8 layers of 6
	15 CDEs (BTEM) from NRL arranged in 3 layers of 5
	positioned on a moving table + rotating table (48)
Electronics:	222 channels
	preamp + 2 sets of shaping amplifiers
	low-gain "x1,,, high-gain "x20,,
	commercial VME ADCs (CAEN 785)
Localization	: 2 X-Y Silicon chambers (Trieste)
Trigger:	2x2x0.2 cm ³ plastic scintillator located 6 m in front of the detector
Beams:	electrons at 10-20-50-80-120-150 GeV, 20 GeV muons, 20 GeV pions
Count rate:	100 Hz
"Converter,,	$15x15 \text{ cm}^2$ Pb sheets of various thicknesses (0-16 X ₀ , 1.3 X ₀)
People:	Bordeaux: 7, Kalmar: 3, CEA: 2, Trieste:2

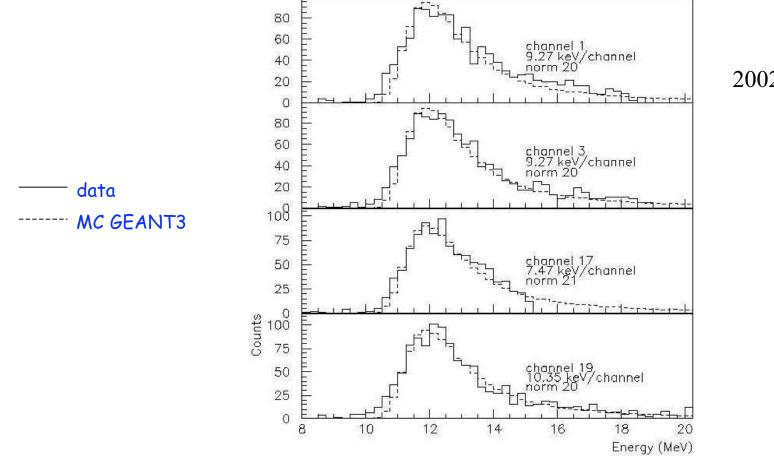
Collaboration Meeting Sep 15 – 17, 2003



Setup

Calorimeter Subsystem Status

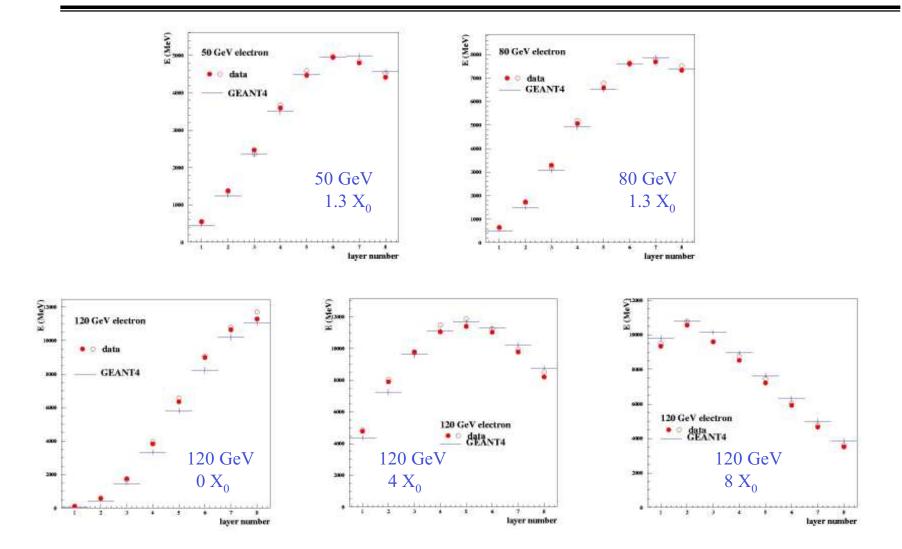
Energy Calibration


All we have for absolute calibration are muons E-deposits. Can we use the muon data alone ($E_{dep} \sim 12 \text{ MeV}$) to establish the calibration up to tens of GeV?

Procedure:

Muons in Big Diodes (BD) corrected for attenuation* Conversion Slope for BDs with high-gain amplifiers Pulser: relative gains between low- and high-gain amplifiers Conversion slopes for Big Diodes with low-gain amplifiers Small-diode vs Big-diode correlation using beam data: Conversion slopes for Small Diodes

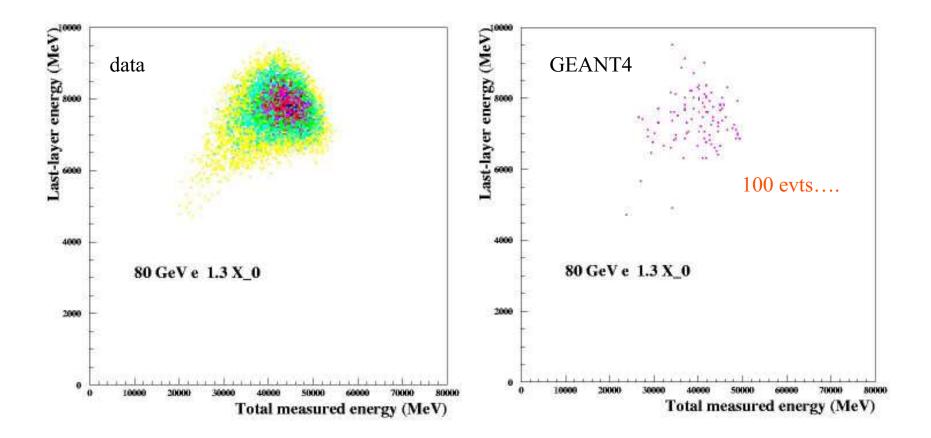
*attenuation coefficients: Left/Right dependence on position



2002 experiment

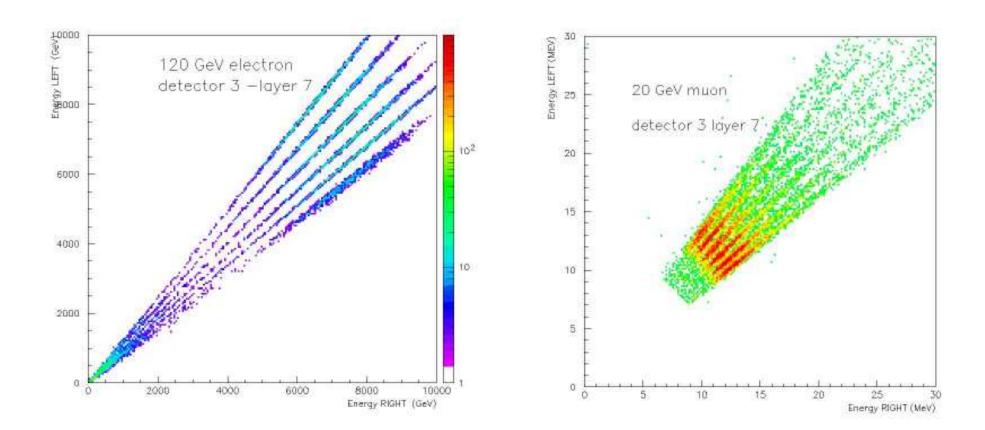
high-gain amplifiers

Longitudinal shower profiles

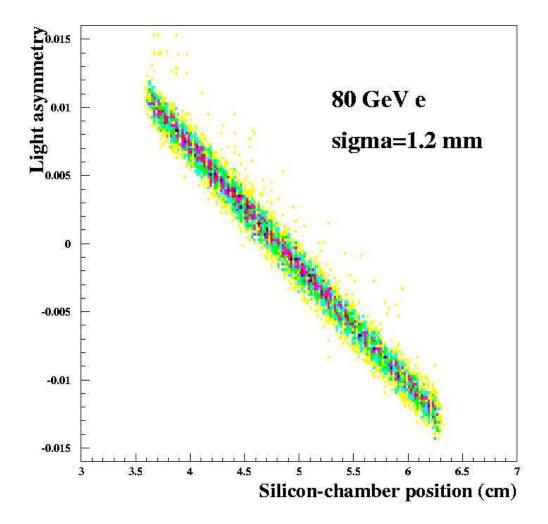


Benoît Lott

Collaboration Meeting Sep 15 – 17, 2003


Last layer correlation

Collaboration Meeting Sep 15 – 17, 2003


Light collection asymmetry

Collaboration Meeting Sep 15 – 17, 2003

Position measurement

Benoît Lott