Discovery of a Distinct Higher Energy Spectral Component in GRB941017

M.M. González, B.L. Dingus, Y. Kaneko, R.D. Preece, C.D. Dermer and M.S. Briggs

Nature, 424, 749 (Aug 14th 2003)

• 43 BATSE Triggers were analyzed.

These 43 bursts were bright above 300keV and have flux>10 ph/cm²/s

Combine BATSE and EGRET-TASC data to characterize the synchrotron component and its temporal evolution when possible.

*****This analysis is especially important when the synchrotron component peaks >~1MeV where BATSE has poor sensitivity.

Comptel Gamma Ray Observatory

EGRET-TASC

- NaI calorimeter, 6400cm² x 8r.l.
- No self-trigger
- Sensitive to all directions.
- E= 1-200MeV
- 1, 2, 4, 16, 32.7s time resolution
- 65% dead time

BATSE

- trigger
- direction of the burst
- E= 25keV-2MeV
- •16-64 msec time resolution

- Fit background using rate before and after the burst.
- Calculate detector response for the known burst direction.
- Use RMFIT spectral fitting program written for BATSE in IDL environment that combine both sets of data.
 - Different photon models are possible
 - Normalization factor between BATSE & EGRET is added

- 26/43 with detected by TASC
- 16/43 have significant detection in more than 1 time interval in TASC.
- 25/26 are consistent with an extension of the synchrotron emission

Background Check 15 orbits earlier = same position relative to Earth's magnetic field

No TASC Detection

Yes TASC Detection

GRO mass model + Monte Carlo EGS => Response Matrix

Response Matrix + Counts spectrum => Energy Spectrum

Comparison of Spectral Fit with Previous Analysis Algorithms and BATSE's RMFIT Program

<u>GRB940217</u>	10'	GRB94021	7	
a. BATSE-LAD 33-1820 keV	10 ⁴			8 - 24 s
b. EGHET-TASO 1-180 MeV	10 ⁴ 10 ⁹ 10 ⁹ 10 ¹ 10 ¹			24 - 90 s
-200 0 200 400	10 ² 10 ²	****		90 - 123 s
Time Since Trigger (s)	102	10 ³	10 ⁴ 10	5
<u>GRB940217</u>		Energy (ke	eV)	
N=0.6, E=0.03-177MeV		25.00	00 432	
Time after DATSE trigger (S) $\Lambda(x_10_3 \text{ pb/om}^2 \text{ s ko})/\lambda$	0-23 11 2±0 1	20-90	90-123	
$A(x 10 \circ p 1)/c 117 - S - KeV)$	11.2IU.1	12.910.1 675+26	40.210.2	
			070 ± 14	
	$\Box 3.17 \pm 0.02$			
	∃ 3.17±0.25	□2.09T0.90		

N=0.6, E=0.03-178MeV

Fime after trigger (s)	B -7	7-23
A(x10 ⁻³ ph/cm ² -s-keV)	25.4±0.5	27±0.3
Epeak(keV)	814±71	732±30
x,	⊟1.01±0.03	⊟1.11±0.01
B]2.24±0.08	2.66±0.1 2

GRB990123

N=0.7, E=0.03-128MeV

Time after trigger (s)	D -33	33-66
A(x10 ⁻³ ph/cm ² -s-keV)	30.7±0.2	44.5±0.3
Epeak(keV)	734±13	543±10
	⊟0.62±0.01	0.88±0.01
B	⊒2.58±0.06	⊒2.77±0.08

<u>GRB940703</u> N=0.3, E=0.03-139MeV		
Time after trigger (s)	⊟1-32	32-64
A(x10 ⁻³ ph/cm ² -s-keV)	11.1±0.2	110.6±0.5
Epeak(keV)	1120±135	613±9
	⊟1.09±0.03	⊟0.96±0.01
B	⊟1.92±0.06	⊒2.42±0.03

GRB970202		
N=0.6, E=0.03-100MeV	,	
Time after trigger (s)		1-3
A(x10 ⁻³ ph/cm ² -s-keV)	39.5±2.1	42.4±1
Epeak(keV)	487±32	630±27
	0.11±0.08	⊟0.19±0.0
B	⊟2.12±0.09	⊒2.64±0.1

- 11th brightest in BATSE Catalog
- **T90** = 77s
- BATSE; Preece 00, Briggs 98
- **COMPTEL detected light curve**
- TASC; Catelli 98

zang=65.6 azi=102.2

- Correlation in light curves. Brightest bin in TASC corresponds to peak in BASTE.
- BATSE light curve :
 precursor 90s before trigger
 toil 112 211a is 17¹/₂
 - tail 113-211s is 17^[].
- TASC light curve:
 detection in 113-211s is 6 in E=10-200 MeV

GRB941017 shows a new spectral component !!!

• Both components observed by both detectors.

• BATSE-LAD and TASC data joint nicely describing the synchrotron component in first time intervals => Correct Normalization factor (=0.45) & good background fit.

• For last time intervals BATSE detection consistent with second component.

• Broad energy range => separate both components & identify different temporal evolution.

Low Energy Component fitted with a Band Function

• Hard to soft evolution of synchrotron component as observed in other BATSE bursts.

• Synchrotron comp. dims with time.

• Differential Photon Spectral index for second component is constant and =-1.

- Decay of Energy fluxes are described by a power law with indices for the different energy ranges are:
 -2.8(0.03-2 MeV), -1.45(2-10 MeV) and -0.2(10-200 MeV).
- Fluence_{total} > 3*Fluence_{BATSE}

CONCLUSIONS

GRB941017 shows a new spectral component !!!

- Duration ~150 seconds
- Photon spectral index ~ -1.
- Peak flux at > 200 MeV
- Fluence > 3*Fluence_{BATSE}
- Temporal evolution different from the lower energy (synchrotron?) component
- Difficult for standard inverse Compton models—maybe reverse shock or hadrons (i.e ultra-high energy cosmic rays)

Reverse Shocks

Granot & Guetta 8 Sept 2003 astroph submission

- Higher Energy Component due to Synchrotron Self Compton of Reverse Shock
- Lower Energy Component due to Synchrotron Self Compton of Forward Shock in contrast with most GRBs that are believed to be due to synchrotron not SSC
- "... find that it is hard to explain. Most models fail badly.,,

GLAST Expectations

GRB941017's high energy component is described by $dN/dE = 2x10^{-7} (E/3x10^4 keV)^{-1} \square (cm^2 sec keV)$ E dN/dE = dN/d(lnE) so

 $dn_{obs}/d(lnE)=6 x (Area/1000cm^2)$ [/sec

	erential proton nux				
Time from BATSE trigger (s)	- 18 to 14	14 to 47	47 to 80	80 to 113	113 to 211
Band GRB function parameters					10001-2.2
A (photons cm ⁻ s ⁻¹ keV ⁻¹)	0.01 ± 0.0005	0.05 ± 0.001	0.02 ± 0.001	0.007 ± 0.003	0.0510.02
Epeak (keV)	505 ± 69	350 ± 8	240 ± 14	91 ± 15	10 fixed
 α (low-energy spectral index) 	-0.84 ± 0.09	-0.79 ± 0.02	-1.08 ± 0.06	-1.45 ± 0.27	-1.00 fixed
g (high-energy spectral index)	-2.22 ± 0.13	-2.46 ± 0.05	$-2.65_{-0.85}^{+0.22}$	$-3.13_{-\infty}^{+0.63}$	-2.73 ± 0.55
High-energy power law parameters					
A_{PL} (x10 ⁻⁷ photons cm ⁻² s ⁻¹ keV ⁻¹)	NA	2.4 ± 0.6	2.4 ± 1.0	3.2 ± 0.7	1.8 ± 0.5
γ (highest-energy spectral index)	NA	-1.00 fixed	$-1.06^{+0.70}_{-0.44}$	$-1.10^{+0.32}_{-0.17}$	0.96+0.36
Probability	NA	1.40×10^{-4}	3.71×10^{-4}	6.49×10^{-8}	1.44×10^{-7}
Energy flux for different energy ranges (x10 ⁻⁶ erg	s ⁻¹ cm ⁻²)				
0.03-2MeV	0.85 ± 0.02	3.52 ± 0.46	0.96 ± 0.19	0.20 ± 0.02	0.03 ± 0.004
2-10MeV	0.33 ± 0.008	0.82 ± 0.11	0.20 ± 0.04	0.15 ± 0.01	0.07 ± 0.007
10-200 MeV	0.38 ± 0.009	2.63 ± 0.35	2.03 ± 0.40	2.54 ± 0.25	1.67 ± 0.18
The first sixrows contain the best spectral fit paramete power law in the fit is due to chance, as determined b not required to fit the spectrum. For the second and li 47 s) or assumed to be reasonable (E_{pass} and α in 11 energy ranges of 0.03–2, 2–10 and 10–200 MeV, resp	ars for the five time intervals since γ the χ^2 test. The last three row γ the χ^2 test intervals, poorly determine (3-211s). The temporal fit of the correctively. Thus the temporal er	wm in Fig. 2. The seventh row s so contain the energy fluxes to ad parameters were lixed at va he energy fluxes (F) in the last 1 nergy flux decay of the higher-t	shows the probability that the ir withree different energy range lues that are either consistent tour time intervals when descr energy component is much ske	rprovement in χ^2 from the addi s. For the first interval, the high with those determined for later ribed by $F = At^{-\phi}$, yields $\phi = 2$ ower than the typical energy flu	tion of the high-energy energy power law was time intervals (y in 14- 8, 1,45 and 0.2 for the ix decay of afterglows
NA, not applicable.					
A N Dave 11 of 3	(U)				