GLAST LAT Multiwavelength Studies: Involving the User Community

Notes from Report of the Ad Hoc Multiwavelength Observation Planning Group

Roger Blandford, Co-chair
Dave Thompson, Co-chair
Seth Digel
Greg Madejski
Roger Romani
Steve Thorsett
Outline

- MOTIVATION: Why gamma-ray sources should be multiwavelength (MW) objects
- IDENTIFICATION: Finding the blazars and pulsars.
- DISCOVERY: New science; counterpart searches.
- EXPLORING: MW blazar monitoring and campaigns.
 MW pulsar studies
- SUMMARY: What is needed and when
Gamma-ray Sources: Inherently Multiwavelength

In the MeV range and above, sources are non-thermal ⇒ produced by interactions of energetic particles

- Nature rarely produces monoenergetic particle beams. Broad range of particle energies leads to a broad range of photon energies.
 - Example: π^0 production
- Charged particles rarely interact by only one process. Different processes radiate in different energy bands.
 - Example: synchrotron-Compton processes
- High-energy particles needed to produce gamma rays can radiate in lower-energy bands as they lose energy.
 - Example: gamma-ray burst afterglows
Multiwavelength Gamma-ray Sources
MW Approaches for LAT

Two broad areas:

1. **Identification for known source classes; discovery of new classes.** “What are they?”

2. **Exploration of identified sources.** “What can we learn from them?”

<table>
<thead>
<tr>
<th>Source Class</th>
<th>Number seen by EGRET</th>
<th>Number anticipated with LAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blazars</td>
<td>80 definite 50 possible</td>
<td>>2000</td>
</tr>
<tr>
<td>Rotation-powered pulsars</td>
<td>6 definite 3 possible</td>
<td>100-500</td>
</tr>
<tr>
<td>Normal galaxies</td>
<td>2</td>
<td>4-5</td>
</tr>
<tr>
<td>Gamma-ray bursts</td>
<td>5</td>
<td>>500</td>
</tr>
<tr>
<td>Unidentified sources</td>
<td>170</td>
<td>?</td>
</tr>
<tr>
<td>Supernova remnants/plerions</td>
<td>1 likely ~5 possible</td>
<td>>10</td>
</tr>
<tr>
<td>Radio galaxies</td>
<td>1 likely 1 possible</td>
<td>?</td>
</tr>
<tr>
<td>X-ray binaries/microquasars</td>
<td>1 likely 2 possible</td>
<td>?</td>
</tr>
<tr>
<td>Starburst galaxies</td>
<td>0</td>
<td>~10</td>
</tr>
<tr>
<td>Clusters of galaxies</td>
<td>0</td>
<td>?</td>
</tr>
</tbody>
</table>

Note: GRB needs are being studied by the GLAST Burst Committee.
MW Source Identification for LAT

Identifications of known source classes

- Gamma-ray Source detection
 - Is it a blazar?
 - Yes
 - MW Studies Monitoring Flaring Modeling
 - No
 - Is it a pulsar?
 - Yes
 - Exploration of identified sources
 - MW Studies Pulsation Spectra Modeling
 - No
 - MW Studies Discovery Space

- Exploration of identified sources

- Discovery of new source classes and new research areas.

 “Eliminate all other factors, and the one which remains must be the truth.” Sherlock Holmes
IDENTIFICATION
AND
DISCOVERY
Blazar Identification Example: 3EG J2006-2321

First Clue: Gamma-ray variability

Radio sources in the error box

Spectral energy distribution is bimodal like other blazars

Conclusion: a flat spectrum radio quasar (FSRQ)

Wallace et al.

D. Thompson

One flat-spectrum radio source, 260 mJy at 5 GHz;
one marginally-flat source, 49 mJy; other sources are much weaker

Optical observations:
The 49 mJy source is a normal galaxy;
The 260 mJy source has an optical counterpart with a redshift z=0.83

Variable optical polarization is seen.
Only an X-ray upper limit found.

GLAST Users Group Aug. 10, 2004 8
Problem: the exhaustive, one-at-a-time approach just described is impractical for the thousand or more blazars expected with LAT.

LAT needs an efficient blazar identification scheme, basically an expanded catalog of blazars. BEFORE LAUNCH.

Three examples of pilot projects to accomplish this goal:
2. Sowards-Emmerd, Romani, and Michelson have shown that compact, flat-spectrum radio sources are a good identifier of blazars. Their analysis has found a substantial number of new blazars in the EGRET source catalog.
3. The ASI (Italian Space Agency) Data Center Blazar Candidate sample uses cross-correlation between NVSS and ROSAT All Sky Survey (RASS) radio and X-ray surveys, plus optical magnitudes in the blazar range from the Guide Star Catalog 2 (GSC2), producing over 7400 candidates.
MW Needs for Identifying Blazars

Strong correlation of blazars with flat-spectrum, compact radio sources.

In Northern Hemisphere, CLASS 8.4GHz + NVSS/FIRST
In Southern Hemisphere, need new observations. ATCA 20 GHz survey may help.

Recommendation: complete a Southern Hemisphere survey out to at least 8.4 GHz and down to at least 100 mJy, preferably to 30 mJy.

Optical identifications and redshift measurements are important to establish extragalactic origin and rule out unlikely candidates.

Recommendation: complete a program of optical identifications and redshift measurements for all known flat-spectrum radio sources brighter than 100 mJy at 8 GHz.
Although some pulsars may be detectable in LAT data with blind searches, the deepest searches for pulsed emission will require timing information from other wavelengths, primarily radio.

Timing observations need to be contemporaneous, because young pulsars typically have significant timing noise.

Radio astronomers, coordinated by Steve Thorsett, are prepared to support LAT observations, but the number of pulsars to be monitored will have to be limited.

Recommendation: Use pulsar models to develop a prioritized list of radio pulsars to be monitored.

BEFORE LAUNCH AND DURING THE FULL MISSION
If neither a blazar nor a radio pulsar identification is possible, then the challenge is one of discovery, covering a wide range of exciting possibilities.

Although some specific source characteristics may motivate particular searches (e.g. non-variable, extended gamma-ray emission could be a molecular cloud, a supernova remnant, a galaxy, or a cluster of galaxies), we suggest that a generic approach is to work from X-rays downward in energy (as was done with Geminga, the classic example).

Note that gamma-ray source identification in general, but particular for sources near the Galactic Plane, is strongly dependent on development of a good model of the diffuse emission, a responsibility of the LAT team.

Recommendation: support detailed CO observations for specific directions needed to augment models of the diffuse emission.
Nearby/High-Latitude Discovery Approach Example

Parallel effort by two groups, headed by Mirabal/Halpern and Reimer/Carramiñana – used the same approach and reached the same conclusion for 3EG J1835+5918

Start with deep ROSAT image (soft X-rays)

Take deep optical images to try to identify all the X-ray sources. Most turn out to be stars or QSOs, unlikely gamma-ray sources. One candidate has no obvious optical counterpart: RX J1836.2+5925.

Use radio search to look for possible radio pulsar. None found.

Use Chandra to obtain X-ray spectrum of the candidate: two components, one thermal, one power law.

D. Thompson
Catalogs of existing objects, plus search tools such as NED and Simbad, provide tools for population studies, which are important but do not necessarily identify individual sources.

The most useful X-ray observations for discovering gamma-ray counterparts are likely to be those with good angular resolution and sensitivity above 2 keV, where absorption effects are minimized.

Recommendation: Plan campaigns with Chandra, XMM, Astro E2, and (if selected) NuSTAR for high-energy X-ray studies of unidentified gamma-ray source error boxes, supplemented by radio mapping.

DURING EARLY PART OF MISSION IN PARTICULAR
EXPLORATION OF IDENTIFIED SOURCES
Pulsars and Blazars as examples
MW Needs/Resources for Pulsar Exploration

In order to study phase relationships of pulses and to add data over long time intervals, we need absolute phase information. This requires continued timing of pulsars, along with occasional collection of Dispersion Measure (DM) information from radio measurements.

Recommendation: Work with radio pulsar astronomers to collect radio timing information regularly over the life of GLAST, for some set of pulsars. Obtaining DM information is a straightforward effort.

Deep radio, optical and X-ray exposures, with timing, will be needed in order to develop true MW information about pulsars, both young and millisecond.

Recommendation: Plan proposals for follow-on pulsar observations with X-ray, optical, and radio telescopes.

DURING THE MISSION
Blazars are characterized by both short-term and long-term variability at essentially all wavelengths. The relationship between changes at different wavelengths is a powerful tool for studying the jets in these sources.

Two general aspects to exploration of blazar variability:
1. Monitoring to know what the long-term behavior is and to identify short-term flares.
2. Campaigns for intensive study, particular during flares.

DURING THE MISSION
LAT itself will be an excellent monitor for blazar activity, particularly in scanning mode.

There are a number of existing blazar monitoring programs at other wavelengths.

Recommendation:
We should be sure to collaborate with existing programs.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Facility</th>
<th>Possible Contact (bold – contact made)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio monitoring</td>
<td>Metsahovi</td>
<td>Terasranta</td>
</tr>
<tr>
<td>Radio monitoring</td>
<td>Michigan</td>
<td>Aller</td>
</tr>
<tr>
<td>Radio monitoring</td>
<td>VLA/VLBA</td>
<td>Kellerman</td>
</tr>
<tr>
<td>Optical monitoring</td>
<td>ESO</td>
<td>S. Wagner</td>
</tr>
<tr>
<td>Optical monitoring</td>
<td>WYBT</td>
<td>Villata</td>
</tr>
<tr>
<td>Optical monitoring</td>
<td>GTN</td>
<td>Cominsky</td>
</tr>
<tr>
<td>Optical monitoring</td>
<td>Perugia</td>
<td>Tosti</td>
</tr>
<tr>
<td>Optical monitoring</td>
<td>Crimea</td>
<td></td>
</tr>
<tr>
<td>X-ray monitoring</td>
<td>RXTE</td>
<td>Marscher</td>
</tr>
<tr>
<td>X-ray monitoring</td>
<td>Swift</td>
<td>Gehrels</td>
</tr>
<tr>
<td>TeV monitoring</td>
<td>VERITAS</td>
<td>Ong</td>
</tr>
<tr>
<td>TeV monitoring</td>
<td>Magic</td>
<td>Merck</td>
</tr>
<tr>
<td>TeV monitoring</td>
<td>HESS</td>
<td></td>
</tr>
<tr>
<td>TeV monitoring</td>
<td>CANGAROO</td>
<td>Mori</td>
</tr>
</tbody>
</table>
MW Resources for Blazar Campaigns

Planned MW campaigns require substantial effort to organize but can produce broader coverage.

Target of Opportunity campaigns are easier to manage, but the coverage is less likely to be complete.

Recommendation: We should collaborate in both types of MW blazar campaigns and work to obtain 24 hr. coverage around the world for ground-based telescopes.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Facility</th>
<th>Possible Contact (bold – contact made)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio</td>
<td>Metsahovi</td>
<td>Terasranta</td>
</tr>
<tr>
<td>Radio</td>
<td>VLA</td>
<td></td>
</tr>
<tr>
<td>Radio</td>
<td>VLBI</td>
<td>Wehrle</td>
</tr>
<tr>
<td>Radio</td>
<td>Green Bank</td>
<td></td>
</tr>
<tr>
<td>Radio</td>
<td>Parkes</td>
<td></td>
</tr>
<tr>
<td>Radio</td>
<td>Michigan</td>
<td>Aller</td>
</tr>
<tr>
<td>Radio</td>
<td>VLBA</td>
<td>Kellerman</td>
</tr>
<tr>
<td>Sub-mm</td>
<td>SEST</td>
<td>Tornikovski</td>
</tr>
<tr>
<td>IR</td>
<td>Spitzer</td>
<td></td>
</tr>
<tr>
<td>Optical</td>
<td>ESO/ENIGMA</td>
<td>S. Wagner</td>
</tr>
<tr>
<td>Optical</td>
<td>WEBT</td>
<td>Villata</td>
</tr>
<tr>
<td>Optical</td>
<td>GTN</td>
<td>Cominsky</td>
</tr>
<tr>
<td>Optical</td>
<td>Perugia</td>
<td>Tosti</td>
</tr>
<tr>
<td>Optical</td>
<td>Crimea</td>
<td></td>
</tr>
<tr>
<td>X-ray</td>
<td>Chandra</td>
<td></td>
</tr>
<tr>
<td>X-ray</td>
<td>XMM</td>
<td></td>
</tr>
<tr>
<td>X-ray</td>
<td>RXTE</td>
<td>Marscher</td>
</tr>
<tr>
<td>X-ray</td>
<td>Swift</td>
<td>Gehrels</td>
</tr>
<tr>
<td>X-ray</td>
<td>Astro E2</td>
<td>Takahashi</td>
</tr>
<tr>
<td>X-ray</td>
<td>NuSTAR</td>
<td>Harrison</td>
</tr>
<tr>
<td>TeV</td>
<td>VERITAS</td>
<td>Ong</td>
</tr>
<tr>
<td>TeV</td>
<td>Magic</td>
<td>Merck</td>
</tr>
<tr>
<td>TeV</td>
<td>HESS</td>
<td></td>
</tr>
<tr>
<td>TeV</td>
<td>CANGAROO</td>
<td>Mori</td>
</tr>
</tbody>
</table>

D. Thompson

GLAST Users Group Aug. 10, 2004
In reviewing resources, we note two possible “choke points” in planning:

1. Far-IR (satellite) observations (the peak of some FSRQ synchrotron components) are only possible with Spitzer Space Telescope (SIRTF), but it is heavily oversubscribed and will lose cooling early in the GLAST mission.

2. The amount of X-ray telescope time needed for both identification and exploration is substantial, probably more than will be readily available through the few X-ray telescopes that will be operating in the GLAST era.
Multiwavelength Observations

- Gamma-ray Multiwavelength Mailing List Archive
 Please contact Dave Thompson or J.D. Myers to be added to the mailing list.

- Science Requirements Document
- Large Area Telescope (LAT) Properties
- GLAST Burst Monitor (GBM) Properties
- Planning, Operations, and Data Policies (from the NASA Announcement of Opportunity)
- Operations Concept Document
- Project Data Management Plan (in preparation)
- GLAST Science Support Center
- GLAST Telescope Network

Multiwavelength Contacts: Dave Thompson, Steve Thorsett (Pulsars)

http://glast.gsfc.nasa.gov/science/multi/
SUMMARY

• GLAST science will be maximized by MW studies carried out cooperatively between the instrument teams and the user community.

• BEFORE LAUNCH – expand the catalog of known blazars; start radio timing program for pulsars

• EARLY IN THE MISSION – carry out radio and X-ray observations, in particular, to help identify gamma-ray sources.

• THROUGHOUT THE MISSION – collaborate in monitoring and coordinated MW campaigns for flaring sources, regular timing for pulsars