GLAST Blazars: Preparation and Anticipation
w/ L. Greenhill, P. Michelson, T. Readhead, G. Taylor, J. Ulvestad, D. Sowards-Emmerd, S.E. Healey, etc.

The GeV sky – persistent point sources

• To date only pulsars, blazars securely identified
 – Individual variability to cement ID w/ lower energy
 – Statistical association for population as a whole
 – other candidates: HMXB, clusters, SNR, …

• Common Physics of γ-ray dominated sources:
 – Flywheel – bulk storage of mechanical energy
 – Strong magnetic field coupling to a low density (γ and ρ) environment
 – Pair production + weak cascading to lower energy
Looking forward to GLAST (2007)

- >30x EGRET sensitivity
- Expect 4000-10,000 Blazars, >200 Pulsars
Lessons from EGRET

• The bright blazar population is decently characterized
 – Nominally, expect population surprises at the few % level
 – Luminosity, high duty cycle bias
 – w/ 2,000-10,000 expected, we can do serious work with rare sub-sets of the blazar population

• Pulsars are much less well characterized
 – Expect surprises at the 30% level
 – Geminga’s, MSP, B star binaries…

• Beyond this we revel in lightly constrained speculation...
Blazars Dominate the known EGRET sky

- Blazars:
 - Bright EGRET Sources clearly assoc. w/ flat spectrum radio QSO
 - 3EG, Mattox, etc. → ~40 IDs, +20 Candidates
 - Blazar definition heuristic, blazar studies are heterogeneous
 - Striving to be more physics based: (from at least some direction) a jet-dominated AGN with a bimodal, synchrotron+Compton SED (Giommi)
Blazar SEDs

GLAST MW Team
(D Thompson)

FSRQ -- `Red' Blazar
Flat optical
(FSRQ spectrum)
Faint IC X-ray
High z

LBL – intermediate
Low peak BL Lac

HBL -- `Blue' Blazar
Blue Optical
(BL Lac spectrum)
Bright Syn X-ray
Low z

Inv. Compton
Synchrotron

FSRQ: PKS 0208-512
HBL: Mkn 421
Evaluating Blazar counterparts

• Need deep all-sky samples.
• Train SED FoM against clear EGRET counterparts
• Radio: flux, spectrum, compactness
• X-ray: (RASS) weak selection for detection
• Position w/in 3EG uncertainty contour
• Issues:
 – False Positives
 – Confusion
 – Variability
 – Looking under the lamppost
HET 3EG Blazar Survey

- EGRET sources -- start from 3EG (some are spurious!!)
 - Select flat spectrum radio counterparts (NVSS+CLASS or new VLA 8.4GHz A-array)
 - FoM approach: increasing weight with large S_{ν}, small α
 - Including X-ray, γ-ray position:
 - Total FoM has weak X-ray weight, uses 3EG TS maps
 - Optical ID of high FoM, $R<23$ w/ Hobby*Eberly Telescope
 - Optical Arecibo \rightarrow DEC>-10
HET 3EG Blazar Survey

- Results
 - >70% IDs at high b
 - 18% are BL Lac, almost all of rest are FSRQ
 - Multiple IDs (composite \(\gamma \)-ray sources)
 - ~Doubled maximum z
 - Found 2 radio faint (non-blazar) populations

- Isotropic, bulge
3EG Survey Status
GLAST-sized samples

- Note: 3EG was a pointed, intermittent survey
 - Average exposure $\sim 9.5 \times 10^{\text{wk VP}}$
 - Some fainter sources only in one VP i.e. $< 10\%$ duty cycle
 - After correcting for VP exposure, the flux dist'n/VP is good PL
 - Extrapolation to GLAST 1yr sensitivity ($3 \times 10^{-9} \gamma / \text{cm}^2 / \text{s} \sigma$; $1.5 \times 10^{-8} \gamma / \text{cm}^2 / \text{s}$ in two weeks) get
 - 4500 all sky (5 σ, 1yr), 3700 $|b| > 100$
 - About $1/2$ of these bright enough for spectral, temporal study
 - Remove spatial part of FoM – select a threshold giving the desired # of sources
 - We take FoM > 0.04 – gives 1742 all sky, $|b| > 100$
 - Only ($1 > \alpha > -0.5$) FSRQ
 - Gives flux floor $S_{8.4 \text{GHz}} > 85 \text{mJy}$
`CGRaBS’: ID fractions

- **All-sky |b|>10°**
 - 1030/1742 optically classified (59%)
 - 964 (94%) of these w/ z – we’ve contributed 60% of all z
 - 115 (11%) are IDed as BL Lac (about ½ w/ redshifts)

- **Above DEC= 0°**
 - 672/837 optically classified (80%)
 - 624 (94%) with z
 - 81/672 (12%) are BL Lacs
Redshift Dist’n

- 60 $z > 2.5$ (8 in 3EG)
- 30 $z > 3.0$ (5 in 3EG)
CGRaBS optical

Done Yet to Observe

GLAST GUG talk- 15
Why Now?

- GLAST sky will be \textit{variable}
- A externally selected sample complements `triggered’, i.e. γ-selected, objects.
- Important (e.g. high z) sources need to be pre-selected for correlated study
- Secure IDs may still require \textit{simultaneous} monitoring
Blazar Jet Monitoring

- VLBI monitoring to get δ
 - Comparison of δ at γ-ray (0.1pc) and VLBI (~1pc) scales
 - HBL: VLBI $\delta < 4c$ (Giroletti et al. 03)
 - But $\delta \sim 50$–100 needed to model TeV!
 - FSRQ (EGRET Blazars): VLBI δ peaks at 10-12 (Marscher & co)
 - Compare w/ 2-3 for RQSO in general

- Key Question: VLBI ejection vs. γ flare
 - GLAST cont. coverage essential
 - Secondary issue: δ vs. GeV power
 (Macomb, Ulvestad, et al.)
We do all this zoology to enable some Physics

• Probing the acceleration of the AGN jets
 – Step 1 – get β
 • (expect high speeds Kellerman, et 04….)
 – Step 2 – $\beta \Rightarrow \theta, \Gamma$
 • Multi-n component studies (Blandford & Koenigl `79 \Rightarrow Marscher `83 \Rightarrow e.g. Piner et ’03,…)
 – Step 3 – field structure of jet, relate activity to γ outbursts

• Probing the EBL and the onset of star formation
 – Step 1 – find high $z >10$GeV sources (CGRaBS is a start)
 – Step 2 – monitor >10GeV flux
 • With attendant low energy study
 – Step 3 – look for systematic $\tau(z)$ cutoff independent of f source, flaring,…

GLAST GUG talk- 22
EBL Absorption (Madau & Phinney)

- Encouraging successes with optical/IR absorption of TeV Blazars at $z < \sim 0.15$ (e.g. Dwek & Krennrich)
 - Snapshot of the integral stellar content today
 - Expect such studies will make robust measurements in next few years…
- With $>10\text{GeV}$ photons from $z>3$ can probe optical/UV absorption through the peak of star formation $z\sim$
 - Time-resolved monitoring of the onset and growth of star formation

Primak et al 04
EBL Absorption – Can GLAST measure it?

- Present blazar LF, evolution very uncertain: e.g. Salomen&Stecker (a) and Chiang&Mukherjee (b) differ by >10x in # at z>3
- To get time evolution, need follow systematic with z, flare state.
- Improved SSC models, coupled w. optical/X-ray monitoring will greatly improve the prospects
Summary

• Radio-selected Blazars will likely dominate GLAST sky
 – But presently we know of far too few…

• Pre-launch efforts to ID powerful blazars can reasonably match the well-measured GLAST sample.
 – Helps with IDs in early GLAST catalogs
 – Down-selects interesting (i.e. high z, powerful jet) sources for intensive multi-ν study during the GLAST prime mission.
 – GeV physics will be substantially aided by low energy modeling, improved SSC, EC models.

• Sorting the wheat from the chaff…
 – Identify new radio-faint ex-gal populations
 – Search for high latitude Galactic (eg. MSP) sources.