

GAMMA-RAY BURST MONITOR

Status, Results, Plans

Bill Paciesas

GBM Triggers – First Year History

Fermi User's Group

-2-

28 August 2009

+ 253 GRBs

- 242 between 50-300 keV
 - + 67 on timescales > 1 s of which 37 did not also trigger \leq 1 s
 - + 21 on timescales < 64 ms of which 0 did not also trigger \ge 64 ms
- 11 between 25–50 keV, 4 of which failed to trigger 50–300 keV
- No GRBs triggered on hard energy ranges.
- i.e. 212 BATSE-like GRBs in 1 year.
- + 62 commanded (test)
- + 168 SGRs most on soft, short trigger algorithms.
- + 14 TGFs all on hard, short trigger algorithms.
- + 1 solar flare
- Others are Cyg X-1 rises, accidentals, and particle events.

One year of Fermi GRBs

Three Short Bursts

Short GRBs with hard spectra $(E_p \sim few MeV)$

Spectral evolution similar to long bursts but harder & finer timescales

Soft-to-hard spectral evolution not typically seen in long GRBs

			Table 1: GBM TGFs				Second Durities and I			
#	Date	himinisee UT	Start Time w.r.t	Pulse Duration	Kise	Fall	Spacecraft East Long	Position Latitude	total	
1	2008 Aug 7	08:33:24 191042	-10.48 ± 0.01	3.48 ± 0.8	80	3200	253.1	+15.3	365	
2	2008 Aug 28	10:46:30.271448	-11.55 ± 0.01	0.35 ± 0.03	60	140	87.6	+23.6	339	
3	2008 Oct 1	09:24:44.927230	-13.10 ± 0.10	0.50 ± 0.05	100	160	162.8	+10.5	360	
4	2008 Oct 6	19:08:10.745324	-1.02 ± 0.01	0.32 ± 0.03	80	180	159.6	-12.4	247	
5	2008 Oct 25	16:34:45.557752	-9.84 ± 0.02	0.48 ± 0.05	80	120	26.8	-1.1	350	
6	2008 Nov 13	07:44:04.238298					7.2	+2.9	231	
6a				0.30 ± 0.01	40	40			138	
6b				0.37 ± 0.01	20	80			93	
7	2008 Nov 23	20:58:42.331554	-10.35 ± 0.02	0.30 ± 0.01	40	100	129.8	-15.9	230	
8	2008 Dec 23	01:13:14.665124	-12.28 ± 0.03	1.18 ± 0.04	100	140	203.3	-16.9	333	
9	2009 Feb 3	08:32:44.380242	-11.49 ± 0.04	1.18 ± 0.06	280	280	125.8	-16.6	330	
10	2009 Apr 3	05:14:04.223016	-10.71 ± 0.01	0.68 ± 0.08	20	140	336.0	+23.6	284	
11	2009 Apr 8	14:01:52.388780	-0.67 ± 0.01	0.67 ± 0.10	20	180	135.9	+25.6	365	
12	2009 May 10	11:57:15.985436	-2.84 ± 0.15	1.40 ± 0.1	120	1300	24.0	-5.2	276	
13	2009 May 22	04:33:46.890568	-6.54 ± 0.02	0.59 ± 0.02	160	60	167.0	-19.1	299	
14	2009 June 27	06:34:48.325250					281.7	+8.0	422	
14a			-21.40 ± 0.05	0.70 ± 0.05					59	
14b			-12.76 ± 0.03	0.62 ± 0.02					363	

Associated with thunderstorms: "Runaway electron" processes

180

-180

-120

-60

0

Longitude

Latitude

-30

60

120

TGFs are Short and Bright

- Duration ~few ms, maximum energy > 30 MeV
- Pulses are usually fairly symmetric but some (e.g. #10) are FRED-like
- High instantaneous rates imply significant deadtime
- Usually seen in all detectors with similar rates but some (e.g. #1) seen only in detectors on one side of the spacecraft

Occultation Source Monitoring

http://gammaray.nsstc.nasa.gov/gbm/science/occultation

Near-Term Plans

+ FSW revision 2.5

- Add special trigger algorithms for TGFs
 - Algorithm 116 triggers based on a significant rate increase being present in at least two Nals and at least one BGO. The detectors can be any Nal detectors and either of the BGO detectors.
 - Algorithms 117 and 118 also require a significant rate increase in at least two NaIs and at least one BGO, but impose the additional requirement that the detectors with the rate increase be on the same side of the spacecraft (117 → +X, 118 → -X).
 - Algorithm 119 requires a significant rate increase in both BGO detectors (independent of Nals).
 - + All algorithms use the same (configurable) BGO energy range.
 - + All algorithms currently use the same trigger timescale (16 ms).
- Add more ARR decision info to TRIGDAT
- Misc operational improvements
- + Improve ground-based quick-look trigger processing
 - Generate GCN notices from human-in-the-loop locations