

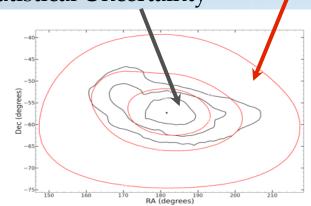
Fermi GBM Status, Results, Plans Linda Sparke NASA HQ, on detail to MSFC

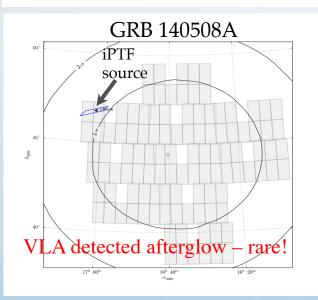
Fermi Users Group 6 November 2015

Operational Changes & Improvements

- We continue to disable some soft energy (22–50 keV) trigger algorithms at weekends & periods of high solar activity.
- Continuous Time Tagged Event (CTTE) data available since 2012.11.26. When the Sun is active, CTTE data are suppressed (throttled) from Sun-facing detectors. An M7-class flare on 28 September 2015 still produced a flood of CTTE data: we will investigate more conservative throttling.
- When soft gamma repeater SGR 1935 +2154 was active in late February 2015, we disabled continuous TTE data. A really bright flare could exceed available CTTE bandwidth, so we would lose data on brightest activity.
- From early 2016, CTTE data will be easier to use: delivered as hourly files (name marks start time). Old files will be re-made to remove timing glitches.
- Search of continuous TTE data off-line for short GRBs that did not trigger GBM: delivers increased numbers of sGRB. Now working to characterize false trigger rates.
- Gains in the two PMTs for each of two BGO detectors: gains were equalized soon after launch, by running one PMT at a time and tweaking voltages. Drift in PMT gains would modestly degrade resolution. GBM may repeat after the current LIGO run ends in mid-Jan 2016: normal BGO science data interrupted for several hours.

ermi


Gamma-ray


GRB Localization & Follow-up

Total Uncertainty Statistical Uncertainty

ermi

Gamma-ray Space Telescope

Proposal required GBM to locate bursts to 15°
Main error sources are systematic: analysis in Connaughton et al. 2015 ApJS 216, 32

- New in 2015: ground automated processing (<1min) now yields location to ~5° (1-sigma), and supplies FITS maps of ground-automated probability contours (red curves, top plot)
- Coming by the end of 2015: RoboBA. Groundautomated positions to ~4.5° with contours, based on 10 minutes of trigger data, supplied about 1 minute after trigger ends.
- RoboBA fails to localize in ~2% of bursts (bad background, missing data, etc.), and will alert a human BA. Corrected files will be uploaded with final position GCN.
- We have had successful follow-ups with iPTF using GBM contour files for location.
- Collaborations with iPTF, IPN, FIGARO, RAPTOR, MASTER, Advanced LIGO, IceCube

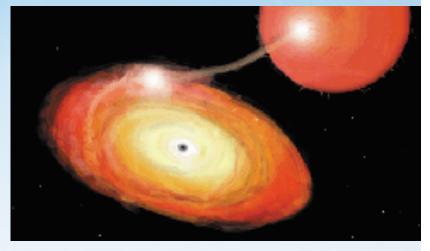
Catalogs from GBM

4-year catalog of time-resolved spectroscopy for 81 bursts with high fluence, peak flux, signal-to-noise: H-F Yu et al. 2015 **Under revision after referee report.**

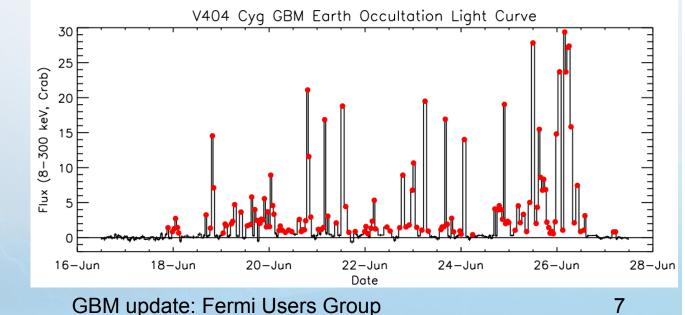
6-year catalog of Gamma Ray Bursts is submitted for publication: 1403 bursts, N Bhat et al 2016

The **GBM catalog of Terrestrial Gamma Ray Flashes** (TGF) will be updated in January 2016: M. Briggs et al. This is the first catalog to include radio data, which will provide localization to ~10 km, for ~35% of TGFs.

The **GBM catalog of Type 1 X-ray Bursts** (P. Jenke at al) is now live, at http://gammaray.nsstc.nasa.gov/gbm/science/xrb.html

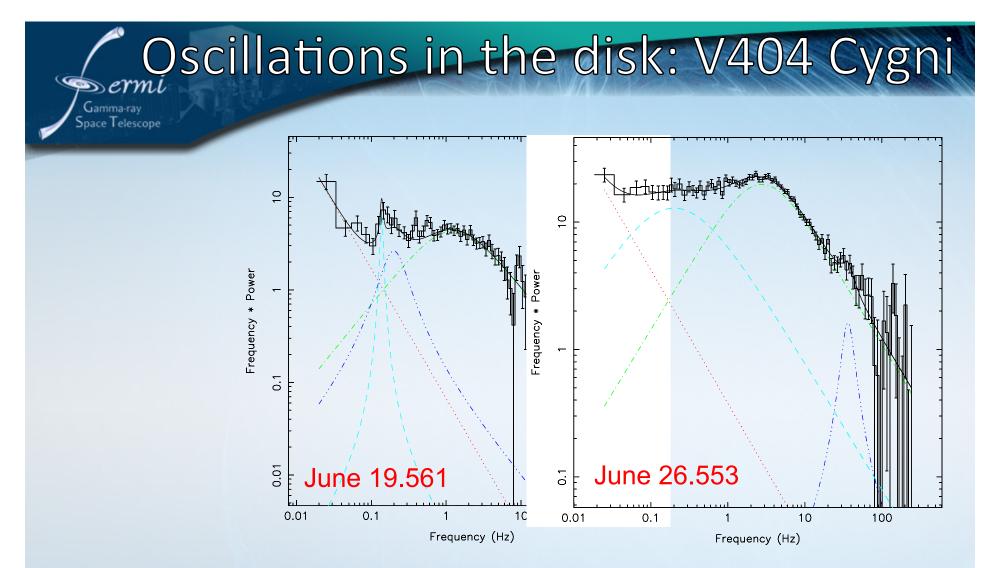

GBM and Swift see the same population of short GRBs: E Burns et al, submitted for publication; posters at Fermi Symposium on flux calibration of GBM vs INTEGRAL/SPI (von Kienlin), INTEGRAL/IBIS (Fitzgerald) and KONUS (Burns).

Gamma-ray


A Black Hole Wakes: V404 Cygni

Press release 30 June 2015: "mailbox spammed by a black hole" Black hole binary V404 Cygni triggered GBM 169 times over 13 days, starting on 15 June 2015. In 73 flaring episodes, it reached 30 x Crab at energies to 300keV.

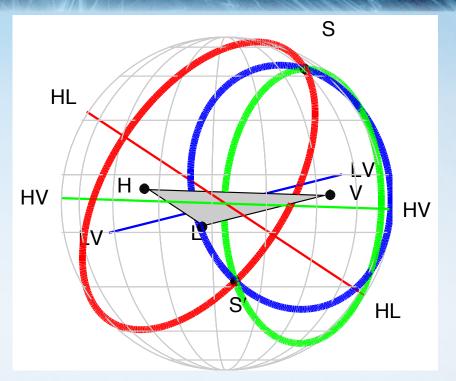
Unusually, the source spectrum was hard throughout: did not soften in high state.



Spectral fits show a hot corona, with variable absorption from ejected material. As flares fade, T_e drops.

6 Nov 2015

Gamma-rav Space Telescope



8-100keV CTTE data binned to 2msec:

Low-frequency QPOs, strongly peaked noise, high-frequency structure Peter Jenke, 6th Fermi Symposium

Short GRB and Advanced LIGO

Advanced LIGO began its first observing run in September 2015. Short GRB (<2s) are likely mergers of compact stellar-mass objects – these are the main expected LIGO sources! GBM triggers on ~40/year. For an electromagnetic signal, to identify the source for follow-up, GBM is the best bet!

Timing measurement on each baseline localizes a source on an annulus in the sky. Advanced LIGO alone will locate sources to 100-1000 deg², but we'd have to get lucky: design sensitivity predicts ~1 close-enough short GRB per year. When Advanced Virgo is added after 1-2 years, sensitivity improves and sources will be located to tens of deg².

Gamma-ray

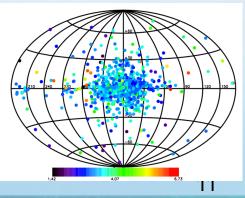
pace Telescope

Searching GBM untriggered data

Under an MOU with the LIGO consortium, GBM has implemented searches of untriggered CTTE data for short GRB as counterparts of candidate gravitational wave (GW) events:

- We do a seeded search (Blackburn et al 2015 ApJS 217, 8) of GBM CTTE for prompt emission at time of a LIGO candidate event.
- We use two methods of unseeded search for sub-threshold short GRB in CTTE data. These deliver candidate short GRBs at a false-trigger rate selected by the user.
- Current effort is to calibrate the false-trigger rate for use when only GBM sees prompt effects. Swift and GBM see 'the same bursts' – the 7 Swift bursts that did not trigger GBM were on edge of GBM's view, 4 seen in CTIME or CTTE data (Burns et al 2015). Next step is comparing with INTEGRAL ACS sub-threshold data, which has timing but no localization info.

Gamma-ray


GBM Summary

- GBM operations and performance are nominal
 - Full-orbit untriggered Time Tagged Event data collection is proceeding smoothly
- Prompt distribution of ground localization and FITS contours will facilitate rapid follow-up of bursts not seen by other satellites.
- Advanced LIGO now in its first run: GBM is searching untriggered data for short GRBs
- Science and catalogs

Gamma-rav

pace Telescope

- GBM Burst Catalog is now continuously updated on-line at FSSC; 6-year GRB catalog paper is submitted for publication
- GRB 4-year catalog of time-resolved spectroscopy is in revision after referee report
- Terrestrial Gamma-Ray Flash catalog released January 2015; release with radio localizations to 10km expected in January 2016.
- Earth Occultation Light Curves and Spin Histories for accreting pulsars regularly updated: access via http://fermi.gsfc.nasa.gov/ssc/data/access/gbm/
- GBM catalog of Type 1 X-ray bursts is live at http://gammaray.nsstc.nasa.gov/gbm/science/xrb.html

