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1 Chi-squared probability function

This note illustrates a procedure to estimate the complement of the chi-
squared probability function defined by

Qu() = [ fult)at, 1)

where n is the degrees of freedom of the chi-squared distribution of interest,
x a value of x? above which the chi-squared probability density function is
to be integrated, and

folt) = Cpe 5tz (2)
1
O ey 3)

The method of estimation illustrated here is to numerically integrate f,(t)
over t as in Eq. 1. Also included are the estimates of the difference between
the true value of the desired probability and the value estimated through the
illustrated method.

2 Numerical integration

This section describes how to perform the integration of Eq. 1 numerically in
detail. First, the estimators of @, (x) are defined, such that the estimators
give an upper limit and a lower limit of @, (z). It gives a foundation of the
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numerical estimation of @, (z) illustrated in this note. Second, the discrep-
ancy between the estimators and @, (x) is discussed. Finally, a procedure to
estimate @, (x) for a given precision is outlined.

2.1 Estimators of @Q,(z)

For 0 < x1 < x5, define function

t(or) = [ falt)dt. (4)
For a given set of x; (i = 1,2,---, k) which satisfy z; < z;4; for any i, if
r1 = x, it is trivial that
k-1
Qn(2) = qn(@i, wit1) + Qu(y). (5)
i=1

Now we define estimators of @, (z) as

k—1
Qi) = D ay (@i, zip1) + Ru(p) (6)
i1
k—1
Q; (fL') = Z q’l’: (xia Ii-l—l)a (7)
i=1
where
Gy (1, m2) = (29— 1) ' max fa(s) (8)
G (T1,72) = (T2 —71) o fa(s) (9)
2z f,(x)
R,(z) = —— (10)
Since
fn(t) < r£a<x fn(s) (11)
for 1 <t < x5 by definition, o
a(rnan) < [ max f(s)d (12)
= max fuls) / Y dt (13)
= ) was fuls) (14)
= ¢, (x1,T3). (15)
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Similarly,
qn(x17x2) Z (I;(«lel’ﬂ- (16)
From section 3.1, Qn(xx) < Ry(xk) for x; > n. Combining that with Eqs. 5,
6, and 15, it follows that
Qn(x) < Qy (2). (17)
for x, > n. Since f,(t) > 0 for t > 0, Q,(z) > 0 for x > 0. Combining that
with Eqs. 5, 7, and 16, it follows that

@n(x) > Q, (x). (18)

In summary, once our estimators, @, (z) and @, (z), are computed through
their definitions, Eqgs. 6, 7, 8, 9, and 10, they satisfy the following inequality
as desired.

Qn (z) < Qn(z) < Qy(2) (19)

2.2 Computational procedure

Consider estimating Q,(z) for a given n and x by computing Q; (z) and
Q,, (z) as described in the previous section, to the precision of € in fraction
to the true value, @, (z). In other words, our goal is to achieve

Qn () — Qy (x) <€ Qul(x) (20)

by choosing an appropriate set of z; (i = 1,2,---, k).
From section 3.4, if x; for ¢ = 1,2,---, k are defined by Eq. 78 and 79,
then Eq. 77 holds. Therefore, letting p = €/2 gives

Qf (1) = Qu(®) _ € . Rulm)
@) 27 Qul)

Also, if zy is chosen such that R,(z;) < (¢/2) - Q;, (), then it implies that

R,(xr) < (€¢/2) - Qn(x), and hence R, (x)/Qn(x) < €/2. Therefore,

Qn(x) —Qu(x) € €
Qn(l‘) <§+§—6, (22)

as we desired. Consequently a computational procedure to compute the
estimators, Q' (z) and @, (x), is as follows.

(21)

1. Set 2, = .



2. Set Qmas = Qumin = 0.0.

3. Repeat the following steps for i = 1,2, - - - until R,,(x;;1) becomes small
enough to satisfy R, (z;11) < (€/2) - Qumin-

(a) Compute z;41 from x; by Eq. 79 for p = ¢/2.

(b) Compute ¢ (x;, z;41) and g, (2, ;1) and add them to Qe and
Qumin, respectively.

Qma:v = Qmax + qr—i— (l‘i, xi-i—l) (23)
Qmin = Qmin + q, (Ti; Tit1) (24)

(c) Compute R, (1)

(d) If z;41 > nand R, (zi41) < (€/2) - Qumin, stop the iteration and set
k =14 1. Otherwise, repeat the above steps.

4. Add Rn(xk) to Qmaxa nameIYa Qmax = Qmax + Rn(xk)

5. Now the estimators are successfully computed as Q;f () = Quqz and
Q,, (x) = Qumin, for which Eq. 20 holds.

3 Useful inequalities

This section lists the inequalities used in this note with their complete proofs.

3.1 Inequality A

For any x > n, the following inequality holds.

2z f(x)

r—n

Qn(r) < (25)

Proof

For a given x > n, define function

mltx) = o) (2) (20



where 8 = 1(z —n+2). Since 2 > n, 2 > 0 and > 1. Also define function

_ ()
1 FH6-1
= exp {—5(75 - x)} (%) . (28)
It is trivial that h,(t,2) =1 at t = z, and that
d 1 1 +B8-2
Chlt ) = —%exp{—g(t—x)} (%) (t—z)  (29)
< 0 (30)

for t > x. Therefore, h,(t,z) < 1 for t > x. Since g,(t,z) > 0 for t > 0, it
implies that f,(t) < gn(t,z) for ¢t > x. Hence,

Ou(z) < /;ogn(t,x)dt (31)
= fu@a’ [ T ar (32)
= fulw)a® - ;1_61 (33)
_ Qifj(s). (34)

(End of proof)

3.2 Inequality B

For any n > 2 and any = > n — 2, the following inequality holds.

20 fn(x
Qn(z) < x_fin(& (35)
Proof
For a given n > 2 and a given z > n — 2, define function
Gn(t, ) = fu(z)e 20, (36)



Whereazﬁ(a:—n—i—Z). Sincen>2andz>n—2,z>0and 0 < a < 3.
Also define function

ha(t,x) = gf’(ﬂ) N (37)
- exp{@v—%ﬂt—aﬂ}(é)f. (38)

It is trivial that h,(t,2) =1 at t = z, and that

d
Dot z) =
It )

200 — 1 exp {(a B %)(t _ a:)} (f)%Z (t—xz) (39)

2z T
< 0 (40)

for t > x. Therefore, h,(t,z) < 1 for t > x. Since g,(t,z) > 0 for any ¢, it
implies that f,(t) < gn(t,z) for ¢t > x. Hence,

On(z) < /;ogn(t,x)dt (41)
— f(2) / el gy (42)
= ful) (43)
B 2z fr(x)
RS (44)

(End of proof)

3.3 Inequality C

For any x; and any x5 which satisfy 0 < 1 < 2o, if £y > n—2 or x5 < n—2,
the following inequality holds.

q;f(ﬂﬁ,ﬁz) - q;($1,352) < To — X1

n—2
1—- — ‘ 45
Gn(71,72) -2 T (45)
where
P To forn>'2andx12n—2 (46)
r1 otherwise



Proof
Define function

1 d

Dy(t) = (z2— Il)fn—(t)%fn(t) (47)
= (12— xl)% In f,(t) (48)

Consider ¢ which satisfies x; < t < x5. For n > 2, D,(t) monotonically
decreases as t increases, hence

Dy (22) < Dy(t) < Dy(a1). (50)

For xy > n — 2, t > n — 2 also holds, hence D, (t) < 0 when n > 2, thus
| D (t)] < |Dn(z2)]. (51)

For zo <n — 2, t <n — 2 also holds, hence D, (t) > 0 when n > 2, thus
| D (t)] < |Dn(z1)]. (52)

Therefore, for n > 2,
1D,(t)] < |Dn(2)]- (53)

For n = 1, D;(t) monotonically increases as ¢, and is negative for any ¢,
hence,
|D1(t)] < [D1(z1)] = [Di(2)]- (54)

For n = 2, Dy(t) is constant over ¢, hence

|Dy(t)| < |Do(2)] (55)
also holds. Thus, in summary,

| Dn(t)] < [Dy(2))] (56)
holds for any n. Since f,(t) > 0 for any ¢, it follows that

fo@®)|Dn(t)] < fu(t)|Dn(2)] (57)



and hence,

[ roDamia < [ foD.@)ar

= [Da(@)] [ fa(t)dt
T
Since x1 < X, it is trivial that

| Du(t) forn>2andt<n-—2
[Dn(t)] = { —D,(t) otherwise.

Therefore, for n > 2 and x5 < n — 2,
/m Fu)Da(B)|dt = / () Da(t)dt
— (29— xl)/: %fn(t)dt
(zo — 1 ){fulz2) — fulz1)}.

Since f,(t) monotonically increases as t for n > 2 and t <n — 2,

Lnax fu(s) = fol2)

xlrgsigm fn(s) = fn (xl)

Therefore,

(w2 — 2){fulw2) — fulz1)} = q; (21, 22) — g (21, 72).
and hence, .
[ 5 1Da(0)ldt = g5 (1, 70) = g a1, ).
Similarly, for n <2 or x; > n — 2,
[ Rl = [ f0F-Du0)d
= @) [ & h(ty
= (x2 - xl){fn(xl) - fn(x2)}7
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and f,(t) monotonically decreases as ¢ increases, thus

ymax fu(s) = falz1) (72)
i fu(s) = falz2). (73)

Therefore,
(@2 = 2){fal@1) — fal@2)} = @ (21, 22) — @, (21, 22), (74)

and hence Eq. 68 also holds for the this case (n < 2 or t > n — 2), and thus
it holds for any n if xt1 > n —2 or zo < n — 2.
Combining Eqgs. 60 and 68 gives

q:(fvhﬂh) - q;($1,$2) < |Dn(f)|qn($1,l"2)a (75)

which holds for any n if x; > n — 2 or xs < n — 2. Since g, (1, x2) > 0 for
0 < x1 < o, it follows that

q:(xla 1‘2) - q;(xla x?)

< |D,(z)]. 76
ST <D (i) (76)
(End of proof)
3.4 Inequality D
For any p > 0 and any x > 0, inequality
+ _ j—

holds for a series of z; (i =1,2,---, k) defined by

and )
i+ p-nu(r;) for n=1
T +2p for n=2
;i —p-na(z;) for n>2and z; <n—2
Tig1 = and x; —p -0y (z;) <n—2 (79)
n—2 for n>2and z; <n—2

and x; — p -0y (z;) > n—2
;i +p-nu(g;) for n>2and z; >n—2




where

2s
s—n+2’

T, = x;+2p+4/2p(n—2). (81)
Proof

From Eqgs. 6 and 7, it is trivial that

Qn(x) = Q; (x) — Ry(xp) = ;{QI(%%H) — 4, (vi, Tig1) }- (82)

Since x; > 0, it follows that x; > n — 2 for n = 1 and for n = 2. Therefore
Eq. 45 holds for the cases, namely,

n—2

)

Tit1 — T
2

4 (ziyxiv1) — q, (T, Tig1) < 1- In(Ti, Tiv1) (83)

where
i { xiy1 fornm >2and x; >n—2 (84)

T otherwise,

since ¢y, (z;,2;41) > 0 for x; > 0 and ;41 > 0, which is trivial from x > 0
and Eqs. 78 and 79.

Eq. 83 also holds for n > 2 and z; > n — 2 since the case satisfies one of the
conditions for Eq. 45, or 1 > n — 2 in the notation for Eq. 45.

Forn > 2 and z; <n—2,if x; — p-n,(x;) > n — 2, then x;,1 = n — 2, thus
x;11 satisfies the other condition for Eq. 45, or 9 < n — 2 in the notation for
Eq. 45. Therefore Eq. 83 also holds for the case. If ; — p-n,(z;) < n—2 for
n > 2 and x; < n — 2, then

Tip1 = Xy —p- 77n(17z) (85)
2px;

. i - (86)

= n-—2 (88)

noting that x; — n + 2 < 0. Therefore z;,, satisfies the latter condition for
Eq. 45, or 9 < n — 2 in the notation for Eq. 45, and Eq. 83 holds for the
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case, too. In conclusion, Eq. 83 holds for all the cases which appear in Eq.
79. Combining Eqgs. 82 and 83 implies

=l
Qi (@) = @y (a) — Rulog) < 3 L

n —

2

2
1- qn (xiaxiJrl)a (89)

which holds for a series of z; defined by Eq. 79.
For n =1, x;41 — x; = p - nu(2;) and 2; = z;, therefore,

Tip1 — X n—2‘ P - () ‘ 1
1-— = — 1+ — 90
= p- 14+ — 91
= p (92)
For n =2, ;11 — x; = 2p and z; = z;, therefore,
Tiy1 — T4 n— 2‘
1-— = 93
5 7 p (93)

Forn>2and x; <n—2and z; —p-nu(x;) <n—2, xip1 —x; = —p - nplx;)
and z; = x;, therefore,

Tit1 — T 1—nj2‘ _ _P'Un(%‘) 1_”_2‘ (94)
2 T 2 T
pT; n—2 )
= — —1 95
=p (96)

Forn>2andz; <n—2and x; —p-nu(x;)) >n—2, x4 — 2, =n—2 —x;
and z; = x;, therefore,

Tir1 — Tj n—Q‘ n—2—ux; n—Q‘
— |1 - = — 11— 97
P Nn(24) (n—2 )
< — -1 98
< 5 = (98)
pI; n—2 )
= — -1 99
= p (100)
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Forn >2and z; > n—2, ;41 — x; = p-n,(&;) and 2; = 41, therefore,

2 xT; 2 Tit1

— o\t -2
:p.<1_”~ ) (1—" ) (102)

Z; Tit1

n—2 I— Ty

= -1 - . 103
b ( Tiy1 fi—n+2> (103)
< p (104)

since ¥; > T;.1, because

Ti— Ty = 2p+/2p(n—2) —pna(z; + 20+ 1/2p(n —2))  (105)
- %+ y2p(n —2) 2p+z; —n+2) (106)

i+ 2p+4/2p(n —2) —n +2

> 0. (107)
Combining Eqs. 89, 92, 93, 96, 100, and 104 give
k—1
Qn(2) = Q, () = Rulzr) < D P+ aulwi,wisa) (108)
i=1
k—1
= p Z Qn(%, 35z'+1) (109)
=1
= p{Qu(x) — Rn(zx)} (110)
< pQu(x) (111)

Therefore, noting that Q,(z) > 0 for z > 0,

Q, (v) = @, () = Rn(ws)
On () <p

(112)

(End of proof)

Supplement: choice of z;
As trivial from the above proof, the question here is to find x;,; which
satisfies x; 1 > x; and

Tit1 — % (1— "_2> <p (113)
2 Tiy1
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for a given x; when x; > n — 2 and n > 2. Eq. 113 can be written as
Tipr — 2 <P a(Tigr), (114)

noting that 7, (z;11) > 0 since z;1; > x; > n — 2. Consider #; which
satisfies

If z; can be found, Eq. 114 holds for x;,; defined as
Tit1 = T +p - 0a(T3), (116)
because, noting that 7, (s) decreases as s increases,
Tig1 — T = P-a(Ty) (117)
< p (i +p () (118)
= P 1(Tit1). (119)

Therefore, the question here is to find z; which satisfies Eq. 115. By
defining A by

Eq. 115 becomes
A>p-nu(x; + A), (121)
or
A+ (z; —n+2—2p)A — 2px; > 0. (122)
The solution for A > 0 is
A > Anin (123)
where
1
Amin = _i(xz —n+2-— 2p)
1
+§\/(xi —n+242p)?+8p(n —2) (124)
< 2p+4/2p(n—2) (125)
since

\/(xi—n+2+2p)2+8p(n—2)

< (xi—n+2+2p)+1/8p(n —2) (126)

for p > 0 and n > 2 and z; > n — 2. Therefore, by letting A =

2p + 4/2p(n — 2), Eq. 121 holds since A > A,,;,, and hence Eq. 113
holds for x;,; defined by Eqgs. 116 and 120.
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4 Complete gamma function

Computation of the complete gamma function that appears in Eq. 3 is
straightforward. For n =1,

r(s) - f/f_é) (127)
and for n = 2,
JORNG s
Letting m a positive integer, or m = 1,2, - -, for an odd integer n = 2m + 1,
r(2) = r(m+1)
_ (m_%)(m_%)...%.%.r %) (129)
_ (m_%) (m—%)---%-%-ﬁ,

and for an even integer n = 2m + 2,

r(3) = Tm+1)
= m(m—1)---2-1-T(1) (130)
= m(m—l)---2-

—_

In summary, for m =1,2,-- -

n m=l n 1 for n=2m
F<§>:H<§_k>x{\/7_r for n=2m -1 (131)

k=1

or in a logarithmic form

n m-l n 0 for n=2m
lnF<§>—gln<§—k>+{ %lnﬂ for n=2m —1. (132)
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