

AGNs with the Fermi-LAT

Benoît Lott CEN Bordeaux-Gradignan, France lott@cenbg.in2p3.fr

on behalf of the *Fermi*-LAT collaboration

Assets for blazar science

- unprecedented sensitivity in the GeV band
- fairly uniform at high galactic latitude
- sky scanned every 3 hours in survey mode
- alerts issued shortly after transient or new flaring sources are detected

- continuous survey allows for source monitoring and variability studies on time scales ranging from months down to a few hours
- covers the little-explored 10-100 GeV domain
 - new spectral features at high energy discovered
 - identification of potential candidates of TeV sources (several discoveries)

Fermi Spring School 2011

Radio galaxies

5-15% of active galaxies Mostly of the elliptical type Galaxies displaying extended radio lobes (up to 10 x larger than the galaxy)

2 classes

- Fanaroff-Riley 1: large opening angle, brighter close to the core, low luminosity, close
- Fanaroff-Riley 2: highly collimated jet, lobe brightened with hot spots, luminous, distant

Fermi Spring School 2011

Unification scheme

Powered by accretion onto a central, supermassive black hole $10^{8\text{-9}}\,M_{\odot}$

Inner part of the disk shines very Broad brightly: *quasar* phenomenon

Observed properties governed by angle wrt line of sight

1 pc = 3 x 10¹⁶ m

```
r_{s}=10<sup>-5</sup> (M/10<sup>8</sup> M_{\odot}) pc
```

Disk size: 10⁻³ pc

Base of VLBI jet: 1-10 pc

Broad-Line Region (BLR): 0.01-0.1 pc

Narrow-Line Region (NLR): 100-1000 pc

Tore: 100 pc

Galaxy diameter: 100 kpc

Radio lobes: 1 Mpc

Caution! This unification scheme is incomplete.

no explanation for differences between:

- radio-loud and radio-quiet galaxies
- FRI and FRII

LAT-detected Radio Galaxies

For these sources, the jet is not directed toward us: greater angle ⇒ less Doppler boosting ⇒ only nearby sources can be detected These close sources can be resolved via radio interferometry (VLBI) deep down the jet, very close to the black hole.

Fermi: 7 FRI radio galaxies and 4 FRII radio sources TeV instruments 3: FRI

Centaurus A

 nearest radio galaxy, FRI, D=3.7 Mpc, detected by EGRET, HESS, Fermi

• M 87

- giant radio galaxy, FRI, D=16Mpc
- detected by HESS, VERITAS, MAGIC

• NGC 1275

- "cooling core" cluster
- detected by COS-B, not by EGRET
- now detected by Fermi, MAGIC

Fermi Spring School 2011

Fermi Spring School 2011

Radio Galaxy: Centaurus A

nearest radio galaxy, FRI, D=3.7 Mpc, detected by EGRET, HESS, Fermi

Parameter	Symbol	Green^1	$Blue^2$	$Violet^3$	Brown^4
Bulk Lorentz Factor	Γ_j	7.0	$5 \rightarrow 2$	3.7	2.0
Doppler Factor	δ_D	1.0	1.79 ightarrow 1.08	3.9	3.1
Jet Angle	θ	30°	25°	15°	15°
Magnetic Field [G]	B	6.2	0.45	0.2	0.02
Variability Timescale [sec]	t_v	$1.0 imes 10^5$		1×10^5	$1 imes 10^5$
Comoving blob size scale [cm]	R_b	$3.0 imes 10^{15}$	3×10^{15}	$1.1 imes 10^{16}$	$9.2 imes 10^{15}$
Low-Energy Electron Spectral Index	p_1	1.8	3.2	1.8	1.8
High-Energy Electron Spectral Index	p_2	4.3		4.0	3.5
Minimum Electron Lorentz Factor	γ_{min}	3×10^2	$1.3 imes 10^3$	8×10^2	$8 imes 10^2$
Maximum Electron Lorentz Factor	γ_{max}	1×10^8	1×10^7	$1 imes 10^8$	1×10^8
Break Electron Lorentz Factor	γ_{brk}	8×10^2		$2 imes 10^3$	4×10^5
Jet Power in Magnetic Field [erg s ⁻¹]	$P_{j,B}$	$6.5 imes10^{43}$	$1.7 imes10^{41}$	$2.7 imes10^{41}$	$4.3 imes 10^{38}$
Jet Power in Electrons [erg s ⁻¹]	$P_{i,e}$	3.1×10^{43}	3.1×10^{42}	2.3×10^{42}	7.0×10^{40}

 Table 2.
 Model Parameters.

 ^{1}SSC Model

²Decelerating Jet Model (Georganopoulos & Kazanas 2003)

³SSC Model excluding X-rays

 $^{4}\mathrm{SSC}$ Fit to HESS data only

Abdo et al. 09

Giant radio lobes of Cen A

Contraction of the second seco

Spans 10° in the sky, can be imaged with the Fermi-LAT

Inverse-Compton emission on Cosmic MicroWave Background or Extragalactic Background Light (IR/optical/UV)

Requires 0.1-10 TeV electrons in giant 'relic' lobes: accelerated in situ or efficient transport from center

Estimated Etot=10⁵⁸ erg, jet power~10⁴³ erg/s, Non-thermal/thermal plasma pressures comparable

Implication for emission region/mechanism in LAT Radio galaxies?

Abdo et al. Science 11

Fermi Spring School 2011

Blazar classes

FSRQ: Flat Spectrum Radio Quasar BL Lac: named after prototype BL Lacertae

Blazar Spectral Energy Distributions (SEDs)

" two-hump" SEDs in $\nu F\nu$

- Low-energy peak: Synchrotron
 - low-spectrum peaked (LSP/LBL) IR-optical (v_{syn} <10¹⁴Hz)
 - intermediate-spectrum peaked (ISP-IBL) : UV (10¹⁴<v_{syn}<10¹⁵Hz)
 - High-spectrum peaked (HSP-HBL) : X-rays (v_{syn} >10¹⁵Hz)

High-energy peak:

- leptonic models: *Inverse Compton* upscattering of seed photons
 - synchrotron: "Synchrotron Self Compton"
 - External to the jet: "External Compton"
- Hadronic models: *photoproduction, synchrotron...*

Connecting the two humps: correlated variability

Ex: FSRQ 3C 454.3

Fermi Spring School 2011

Other class?

- PMN J0948+0022, Narrow-line, radio loud Sy1 (contact: L. Foschini)
 - SED similar to FSRQ, less powerful
 - Radio emission is strongly variable and with flat spectrum, suggests Doppler boosting, now confirmed by LAT
 - More similar sources detected

Abdo, A. A. et al. 2009, ApJ, 699, 976

Blazar/AGN populations at GeV energies (Fermi-LAT, AGILE)

Fermi Spring School 2011

- 11 month data set
- 1079 TS>25, |b|>10° sources
- 1LAC: 709 sources
- 663 high-confidence (P_{assoc}>80%) AGNs
- Census:
 - 281 FSRQs
 - 291 BLLacs
 - (~141 with measured z)
 - 50 of unknown type
 - ~10 Radio galaxies

EGRET (high confidence): ~70 blazars, 25% BLLacs Differences between Northern Hemisphere and Southern one FSRQs: 4%, BLLACs: 18 %

The First Catalog of Active Galactic Nuclei Detected by the Fermi LAT Abdo, A. A. et al. 2010

Fermi Spring School 2011

- 24 month data set
- 1749 TS>25, |b|>10° sources
- 2LAC:
- ~1000 associated (P_{assoc}>80%) AGNs
- Census :
 - 360 FSRQs
 - 420 BLLacs
 - (~60% with measured z)
 - ~200 of unknown type
 - ~20 other AGNs

Preliminary ¹²⁰ ¹⁰⁰ ¹⁰

Fermi Spring School 2011

Associations

1FGL: 1049 sources with TS>25, |b|>10°

CGRaBS (Healey et al. 08) 1627 radio sources from CRATES association based on Figure-of-Merit (spatial, radio and X spectrum) established from EGRET

BZCat (Massaro et al. 08) Compilation of 2500 known blazars association based on spatial coincidence (Mattox et al., 01)

Incompleteness/Anisotropy

• BLLacs have hard spectra making them easier to detect

 Many BLLacs remain unassociated due to the incompleteness of counterpart catalogs in the Southern Hemisphere b>10°: ~260 b<10°: ~160

Photon index – Flux distributions

3.5

FSRQs Flux limit Photon index 2.5 BLLacs 10⁻⁸ Flux [E>100 MeV] ph cm⁻² s⁻¹ 10⁻⁶ 10 40 **FSRQs** BLLacs 35 Number of sources 30 **3EG flux limit** 25 20 15 10 5 F -8.5 -5.5 -7.5 -8 -6.5 -6 log(Flux [E>100 MeV] ph cm⁻²s⁻¹)

hard sources (small photon index) easier to detect

BLLAcs harder than FSRQs

Large significance but few detected photons...

Fermi EGRET

EGRET mean flux « 1234 VP»

EGRET peak flux: maximum in 2-w VPs

Fermi mean flux: 11-m averaged

Fermi peak flux: maximum in 1-m periods

Redshift distributions

(BAT: 40% of FSRQs are at z>2)

Fermi Spring School 2011

$$L_{\gamma} = 4\pi d_{L}^{2} \frac{S(E_{1}, E_{2})}{(1+z)^{2-\Gamma}}$$

 d_L : luminosity distance $S(E_1, E_2)$: energy flux between E_1 (100 MeV) and E_2 (100 GeV)

Only bright sources are visible at large distance *Malmquist bias*

Distant HSPs at constant luminosity couldn't be detected

Cautionary note: only half of the BLLacs have measured redshifts

Synchrotron-peak locations

SED-based classification: Determination of the position of the synchrotron peak FSRQs are all low-frequency peaked and have soft gamma-ray spectra BLLacs are more diverse

Fermi Spring School 2011

Blazar Sequence: « Grand Unification » Between BLLacs and FSRQs?

Average SEDs of blazars binned according to radio luminosity 126 blazars in total 28 with a spectral index measured by EGRET

> • $v_{\text{peak}} \propto L^{-1}$ • $v_{\text{HE}} / v_{\text{LE}} = \text{cst}$ • $L_{\text{HE}} \propto L_{\text{radio}}$

Implies a correlation between

- photon index in the Fermi band and position of the synchrotron peak
- luminosity and photon index in the Fermi band

Many severe selection biases! Some outliers found Many BLLacs without redshift

Fermi Spring School 2011

Fermi Spring School 2011

Reduced accretion rate? Difference in BH spin?

Beware that the correlation does not hold for FSRQs alone.

Fermi Spring School 2011

Fermi Spring School 2011

« GeV-TeV connection »

- 90% of TeV blazars detected with Fermi ~10 TeV sources detected with the help of Fermi
- long integration times are required in the GeV band (difference in sensitivity)
- very few TeV sources show significant sign of variability in the GeV band ⇒ difficult to measure short-term correlated variability between the two bands
- trend in Γ_{TeV} - Γ_{GeV} due to EBL attenuation?

Abdo et al. 2009

PKS2155-304 in quiescent state

SSC parameters

$$\begin{split} s_1 = 1.3, \, s_2 &= 3.2, \, s_3 = 4.3 \\ \gamma_{min} &= 1, \, \gamma_{max} = 10^{6.5} \\ \gamma_{b1} &= 1.4 \times 10^4, \, \gamma_{b2} = 2.3 \times 10^5 \\ N_{tot} &= 6.8 \times 10^{51} \\ R &= 1.5 \times 10^{17} \text{ cm} \\ \delta &= 32 \\ B &= 0.018 \text{ G} \end{split}$$

Important Klein-Nishina effects

Correlated variability more complex than that predicted by SSC

Aharonian, F. et al. 2009, ApJL, 696, L150

SEDs of TeV HBLs

SEDs are often well reproduced by SSC models X-ray and TeV gamma-ray fluxes usually

strongly correlate ⇒« one-zone »

Significant deviations of timing cross-correlations from those expected by SSC are failrly common though

Ex: MW campaign on Mrk501 $s_1 = 2.2, s_2 = 2.7, s_3 = 3.5$ $B = 0.015 \text{ G}, R = 1.3 \times 10^{17} \text{ cm}$ $\delta = 22, \eta_e = 130, \gamma_{min} = 300, \gamma_{b1} = 3 \times 10^4$ $\gamma_{b2} = 5 \times 10^5, \gamma_{max} = 3 \times 10^6$

Abdo, A. A. et al. 2011, ApJ, 727

- Two other FSRQS detected at TeV: 3C279 (z=0.549), PKS1510-08 (z=0.36)
- •Detected by MAGIC
- Very hard in the Fermi-band
- 10 min variability in TeV
- Emission within BLR seems ruled out
- Hadronic component?

Fermi Spring School 2011

Benoit Lott

Time (UT)

Log N-Log S Contribution to Extragalactic Diffuse Background

Fermi Spring School 2011

Diffuse component is due to:

- Galactic Diffuse Emission

🔊 erm.ĭ.

- Extragalactic Diffuse Background (EDB, isotropic)
- Instrumental background (~isotropic)

EDB estimated at high galactic latitude with tight cuts on events to reject instrumental background to the largest possible extent

Fermi Spring School 2011

- F₁₀₀> 5x10⁻⁸ ph cm⁻² s⁻¹: FRSQ density: 6 x 10⁻³ deg⁻² BL Lac density: 2 x 10⁻³ deg⁻²
- F₁₀₀> 10⁻⁹ ph cm⁻² s⁻¹: blazar density: 0.12 ±0.3deg⁻²
- Break in Log N-Log S around
 F₁₀₀ = 10⁻⁷ ph cm⁻² s⁻¹
- Contribution of blazars to gamma-ray extragalactic diffuse background =16±7% Abdo, A. A. et al. 2010, ApJ, 720, 435

I CITIL OPTING OCHOOL 2011

Variability

Fermi's variable sky

Fermi Spring School 2011

~130 Astronomers telegrams

~120 about AGNs

alert threshold:

F[E>100 MeV]~10⁻⁶ ph cm⁻² s⁻¹

Other considerations:

- Significant flux rise wrt average
- TeV detectability
- Event rarity

http://www-glast.stanford.edu/cgi-bin/ pub_rapid

> Flare Advocates issue alerts and feed the Fermi blog

Variability index

Fermi Spring School 2011

3C 279

Flare due to variation of Doppler factor angle wrt ligne of sight $(I(v) \propto \delta^3 I'(v'))$

- bent jet
- wobbling jet
- helical path of blob along the jet

Provide explanation for the observed polarisation swings

Fermi Spring School 2011

Spectral distributions

Curved spectra

- General feature in FSRQs and many LSP-BLLacs
- Absent in HSP-BLLacs
- Broken power law model seems to be favored
- $\Delta\Gamma \sim 1.0 > 0.5 \rightarrow \text{not from}$ radiative cooling
- Possible explanations:
 - feature in the underlying particle distribution
 - Klein-Nishina effect
 - $-\gamma$ - γ absorption effect
- Implications for EBL studies and blazar contribution to extragalactic diffuse emission

daily/weekly light curves

- 5-day long outburst
- peak daily F[E>100 MeV] : (66± 2) x 10⁻⁶ ph cm⁻² s⁻¹
- 13-day long plateau longer in duration and higher in flux than previous ones characteristic behavior for this source!
- onset of plateau marked by weak but significant hardening Γ =2.50 ±0.02 to 2.32 ±0.03

- decrease in flux by a factor of 3 in 4 days
- slowly decaying activity around 20 x 10⁻⁶ ph cm⁻² s⁻¹

preflare and plateau:
 BPL and PL+expcutoff
 give similar quality fits

- logparabola significantly worse
- none of tested functions gives a good fit for the flare period

Evolution of energy break with flux

Constant break-energy issue

10

 EF_E (erg cm⁻² s⁻¹)

 10^{-1}

0.1

1

- γγ attenuation from He II recombination line photons (Poutanen & Stern 2010)
- intrinsic electron spectral breaks (Abdo et al. 2009)
- Ly α scattering (Abdo et al. 2010)
- hybrid scattering (Finke & Dermer) scenarios

Some sources with breaks in the GeV domain (4C+21.35, S5 0715+71) have been detected at TeV energies

10

E (GeV)

100

- 3-hr peak: F_{100} = (85 ± 5) x 10⁻⁶ ph cm⁻² s⁻¹
- most luminous AGN yet observed, isotropic $L_{\gamma} = (2.1 \pm 0.2) \times 10^{50} \text{ erg s}^{-1}$
- 4x flux increase in ~12 hr: ~ 6 hr doubling time
- 4 subflares fitted with same T_r (4.5 hr) and same T_f (15 hr)

$$F = 2F_0 \left(e^{(t_0 - t)/T_r} + e^{(t - t_0)/T_f} \right)^{-1}$$

dL/dt ~ 10⁴⁶ erg s⁻² largest ever measured for a blazar (dwarfs PKS2155-304, Mrk 501...)
 > L_{Edd}/cR_s (3 x 10⁴³ erg s⁻²) as predicted in Eddington-limited accretion scenario (Elliot & Shapiro 74)

Fermi Spring School 2011

- Fermi has enabled major progress in blazar science
- >1000 sources discovered
- monitoring will continue
- unfortunately, little overlap with CTA (2018) is foreseen