

High-Energy Astronomy with Fermi

Overview: Fermi Summer School, Lewes, Delaware

Chuck Dermer

United States Naval Research Laboratory Washington, DC USA charles.dermer@nrl.navy.mil

Outline: Big Picture Fermi Physics

- 1. Fermi Gamma ray Space Telescope
- 2. Some Results from Fermi
- 3. What are the UHECR sources?

GeV vs. TeV astronomy

Diffuse Radiations

GLAST and Fermi

- Launch from Cape Canaveral Air Station
 11 June 2008, 12:05PM EDT
- Circular orbit, 565 km altitude (96 min period), 25.6 deg inclination
- Gamma ray Large Area Space Telescope (GLAST) becomes the Fermi Gamma-ray Space Telescope

Fermi's Instruments

Large Area Telescope (LAT):

- 20 MeV → 300 GeV (including unexplored 10-100 GeV range)
- 2.4 sr FoV (scans entire sky every ~3 hrs)

Gamma-ray Burst Monitor (GBM)

8 keV - 40 MeV

12 Nal detectors (8 keV - 1 MeV)

2 BGO detectors (0.15 - 40 MeV)

views entire unocculted sky

The Large Area Telescope

Fermi Summer School

GBM + LAT - Autonomous repoints

□ LAT pointing in celestial coordinates from -120 s to 2000 s

_

—

- Red cross = GRB 090902B

- Blue line = LAT FoV (±66°)
- Dark region = occulted by Earth
- White points = LAT events (no cut on zenith angle)
- Yellow dot: Sun

Dermer

Fermi Summer School

The Fermi LAT (3 month) Sky

Dermer

Fermi Summer School

The Fermi LAT (2 yr, > 300 MeV) Sky

DernDerrmer

Ferm Bostron ASd Meeting

31 May 20251 May 2011

The Fermi LAT (2 yr, > 1 GeV) Sky

DernDerrmer

Ferm Boston ASd Meeting

31 May 20251 May 2011

The Fermi LAT (2 yr, > 31 GeV) Sky

DernDerrmer

Ferm Bostron ASd Vieeting

31 May 20251 May 2011

First Fermi Source List (1FGL)

- 11 months of data 100 MeV to 100 GeV, 23.3 Ms livetime
- Very uniform exposure (factor 1.25 between north and south)
- Detection based on integrated data (not on flares)
- □ 1451 Sources, TS >25 (≳4σ)

Dermer

Fermi Summer School

One Year Catalog: 1FGL

Sources/ Source Classes Detected with Fermi

- Sun, Moon, Earth
- 3 High Mass X-ray Binaries
- Rotation-powered and millisecond pulsars
- Supernova remnants
- Globular clusters
- > 600 blazars
- At least 11 Radio Galaxies
- Dozens of other AGNs
- 3 Starburst Galaxies

Fermi observations of the Moon Giglietto, N., for the Fermi Large Area Telescope Collaboration 2009, arXiv:0912.3734

LAT 1FGL Source Classes

Abdo et al. 2010, ApJS, 188, 405

Description	Designator	Number Assoc. (ID)
Pulsar, X-ray or radio, identified by pulsations	psr (PSR)	7 (56)
Pulsar, radio quiet (LAT PSR, subset of above)	PSR	24
Pulsar wind nebula	pwn (PWN)	2(3)
Supernova remnant	\dagger (SNR)	41(3)
Globular Cluster	glc (GLC)	8(0)
Micro-quasar object: X-ray binary (black hole	mqo (MQO)	0(1)
or neutron star) with radio jet		
Other X-ray binary	hxb (HXB)	0(2)
BL Lac type of blazar	bzb (BZB)	295(0)
FSRQ type of blazar	bzq (BZQ)	274(4)
Non-blazar active galaxy	agn (AGN)	28(0)
Active galaxy of uncertain type	agu (AGU)	92(0)
Normal galaxy	gal (GAL)	6(0)
Starburst galaxy	sbg (SBG)	2(0)
Unassociated		630

Associations vs. identifications (in parentheses) based on temporal variability or source morphology

Pulsars with Fermi

Pulsars: rapidly rotating, highly magnetized neutrons stars, born in supernova explosions of massive stars or accretion-induced collapse of white dwarfs.

Typically, M \sim 1.4 M_{sun} and R \sim 10 km

A dense plasma is found in the closed-field lines co-rotating with the star. The magnetosphere extends to the "light cylinder", where the rotation reaches the speed of light.

Emission (radio, optical, X-ray ...) can be produced in beams around the pulsar, which acts like a cosmic light-house, probably accelerated on field-lines open to the light cylinder.

~ 1900 pulsars known today, most in radio

The Pulsing γ -ray Sky

Dermer

Fermi Summer School

Pulsar Properties from Observations: Elementary Concepts

- \Box Observations give P, P. Theory gives M_{ns} , R_{ns}
- \Box Characteristic age $\tau \sim P/P$
- \Box Light cylinder radius: $\vec{v} = \vec{\Omega} \times \vec{R}$, $\Omega = 2\pi/P \Rightarrow R_{LC} = Pc/2\pi$
- Magnetic field at the neutron star surface (equating rotational spindown energy with magnetic dipole radiation):

$$-\frac{dE_{rot}}{dt} = \frac{d}{dt} (\frac{1}{2}I\Omega^2) \propto \frac{\dot{P}}{P^3} - \frac{dE_{md}}{dt} = \frac{B^2(R_{LC})}{8\pi} 4\pi R_{LC}^2 c \propto \frac{B_{NS}^2}{R_{LC}^4}$$
$$B(R) \approx B_{NS}/R^3 \implies B_{NS} \propto \sqrt{P\dot{P}}$$

□ Goldreich-Julian density for a force-free magnetosphere:

$$\vec{F} = q(\frac{\vec{v}}{c} \times \vec{B} + \vec{E}) = 0 \qquad \qquad \rho_{GJ} = -\vec{\Omega} \cdot \vec{B} / 2\pi$$

Cosmic Ray Electron Spectrum

 \square >2 m²-sr acceptance at 300 GeV (need to reject CR proton background)

□ Spectrum $\propto E^{-3.04}$ from ~25 and 900 GeV

Nearly featureless;consistent with power law

CR electron spectrum harder than predicted by standard CR propagation models

- Local sources?
- Dark matter?
- Propagation?

Abdo, et al. 2009, PRL, 102, 181101

Fermi Summer School

Tests of Lorentz Invariance Violation

□ Planck mass
$$m_{Pl} = \sqrt{\frac{\hbar c}{G}} = 1.2 \times 10^{19} \text{ GeV} \approx M_{QG}$$
 (?)

- Some quantum gravity models allow Lorentz symmetry violation (e.g., Amelino-Camelia et al. 1998, Ellis et al. 2003)
 - Speed of light becomes energy dependent
 - Time dispersion between low and high-energy photons from same source

Leading term in classical photon dispersion relation

$$|1 - \frac{v_{ph}}{c}| \approx (\frac{E_{ph}}{M_{QG,n}})^n \Rightarrow \Delta t = \pm (\frac{\Delta E}{M_{QG,1}c^2})\frac{D}{c}$$
 (linear)

Does quantum nature of space-time cause variation of speed of light with energy?

Constraints on Quantum Gravity Time Delay

Abdo et al. 2009, Nature, 462, 331

GRB 090510

□ Short hard GRB with many "spikes"

- □ High redshift, z = 0.903 +/- 0.003
- □ 31 GeV photon (27.97, 36.32 GeV 1s CL)
 - 0.829 s after the GRB trigger

 \Box Constraint on QG mass depends on Δt

The most conservative constraint comes from $\Delta t < 0.859$ s, time from precursor

$$M_{\rm QG,1} > 1.19 \; M_{\rm Pl}$$

Table 1 | Limits on Lorentz invariance violation

	Limit on $ \Delta t / \Delta E $ or $ \Delta t $	Limit on $M_{\rm QG,1}/M_{\rm Planck}$	Valid for s_n
Limit a:	$ \Delta t/\Delta E $ < 30 ms GeV ⁻¹	>1.22	±1
Limit b:	⊿t <859 ms	>1.19	1

Black-hole Jet Physics

Dermer

Fermi Summer School

Upper Limits on Extragalactic Background Light

γγ opacity $γ + γ' → e^+ + e^-$

(in intergalactic space)

Infrared/optical EBL from past stellar activity and dust absorption and re-radiation

(attenuates TeV radiation)

Difficult to directly measure

Fermi spectrum extrapolated into TeV range bounded by deabsorbed TeV spectrumdepending on EBL model

Cosmic-ray contribution (Essey, Kusenko et al. 2010, 2011)

Dermer

Fermi Summer School

Lower Limits on the Intergalactic Magnetic Field

Particle Acceleration in the Crab Nebula

Crab Nebula (M1) with HST

Fermi Summer School

Abdo et al. (2010, 2011)

Fermi Summer School

31 May 2011

Maximum Electron Synchrotron Photon Energy

Electron synchrotron energy-loss rate:

$$: \quad -\frac{dE_e}{dt}|_{syn} = \frac{4}{3}c\sigma_T\left(\frac{B^2}{8\pi}\right)\gamma^2$$

$$E_e = m_e c^2 \gamma \quad \Rightarrow \quad t_{syn} = \left|\frac{\dot{E}}{E}\right|^{-1} = \frac{6\pi m_e c}{\sigma_T B^2 \gamma}$$

In Fermi acceleration scenarios, acceleration time < Larmor timescale

$$\therefore t_{acc} < t_L = \frac{E}{QBc} = \frac{m_e c \gamma}{eB}$$

Mean synchrotron photon energy radiated by electron with Lorentz factor γ in a magnetic field of strength B:

$$\varepsilon_{syn} = \frac{3}{2} \frac{B}{B_{cr}} \gamma^2 < \frac{27}{8\alpha_f} \cong 460 \qquad B_{cr} = \frac{m_e^2 c^3}{e\hbar}$$

or $E_{syn} \cong 230 \ MeV \qquad \alpha_f = \frac{e^2}{\hbar c}$

⇒ efficient particle acceleration by Fermi Processes

 $t_{syn} = t_{acc} \Longrightarrow \gamma^2 < \frac{6\pi e}{\sigma_T B}$

Dermer

Fermi Summer School

Ultrahigh Energy Cosmic Rays

Extensive air showers discovered by Rossi and Auger in the 1930s

Charged Particle Astronomy with Auger

period III

O.

0.2

0.1 period II

p. =0.21

Particle Acceleration to Ultra-High Energies in Relativistic Outflows

Proper frame (') energy density of relativistic wind with apparent luminosity L

$$u' = \frac{L}{4\pi R^2 \beta c} \times \frac{1}{\Gamma^2} \qquad \frac{B'^2}{8\pi} \approx u' \Rightarrow B'$$
Maximum particle energy
$$E_{\max} \approx \Gamma Q B' R' \approx \Gamma Z e B' (R / \Gamma)$$
Lorentz contraction: $R' \approx R / \Gamma$

$$\Rightarrow E_{\max} \approx \left(\frac{Ze}{\Gamma}\right) \sqrt{\frac{2L_{\gamma}}{c}} \approx 6 \times 10^{19} Z \frac{\sqrt{L_{\gamma} / (10^{46} erg s^{-1})}}{(\Gamma / 10)} eV$$

Dermer

Fermi Summer School

γ-Ray Galaxy Luminosity

Fermi blazar divide (Ghisellini et al. 2009)

Misaligned AGNs (host galaxies of blazars)

Star forming galaxies (not powerful enough to accelerate UHECRs)

Fermi Summer School

Relativistic Outflows

Dermer

Fermi Summer School

L - Γ diagram

- Bulk Lorentz factor Γ from γγ opacity arguments
- Sources with jet Lorentz factor Γ must have jet power L exceeding heavy solid and dot-dashed curves to accelerate p and Fe respectively, to E = 10²⁰ eV
- □ GRBs can easily accelerate p and Fe to >10²⁰ eV
- Radio-loud AGNs can accelerate Fe to >10²⁰ eV

Dermer

Fermi Summer School

Energy Production Rate within GZK Volume

Sources of ~10²⁰ eV UHECRs must have (local) Iuminosity density ≥10⁴⁴ erg /(Mpc³-yr)

Dermer

Fermi Summer School

Conditions for acceptable UHECR source candidates

- 1. Sources are extragalactic
- 2. Sources within GZK radius
- 3. Source size smaller than Larmor radius
- 4. Adequate energy production rate within GZK volume
- 5. (Fermi) mechanism to accelerate to ultra-high energies
- 6. Composition is dominated by Fe (?)

Model Fits for Luminosity Density

- □ Inject -2.2 spectrum of UHECR protons to E > 10²⁰ eV
- Injection rate density determined by star formation rate of GRBs
- □ GZK cutoff and ankle from photohadronic processes

Fermi Summer School

Luminosity Density of UHECR Candidates from Fermi Data

GRBs have adequate energy production rate only if baryon loading large Fermi data favors ion acceleration by BL Lacs/FR1 radio galaxies

Dermer

Fermi Summer School

Location of Emission Region

- Coherent optical polarization signature
- EVPA swings over long timescales
- Correlation of gamma ray and optical
- γ rays from FSRQs

Black hole or antimatter factory?

Dec

Jan

Feb

Mar

Nov

Dermer

2008 Oct

Sep

Jul

а

 $F_{\gamma}(10^{-7} \text{ ph} \text{ cm}^{-2} \text{ s}^{-1})$

Aug

Fermi Summer School

VHE γ rays from Flat Spectrum Quasars

□ 3C 279 (z = 0.536) with MAGIC

```
□ PKS 1510-089 (zz = 0.361) with HESS
```

 \Box PKS 1222+216 (z = 0.432) with Fermi, HESS, VERITAS

Fermi Bubbles

Data minus diffuse Fermi emission model

Summary

Fermi LAT provides uniform spectral, temporal GeV database of high energy radiation sources

Acceleration physics (pulsars and supernova remnants) Relativistic jet physics New physics: search for dark matter, LIV, magnetogenesis Cosmic ray and UHECR origin

UHECRs from Black Holes: GRBs and Blazars

The most energetic and powerful radiations in nature are made by particles accelerated through Fermi processes in black-hole jets powered by rotation.

Possibilities:

Pulsars/magnetars Galaxy cluster shocks Particle physics candidates Radio-quiet AGNs Dormant black holes Others

Evidence favors (radio-loud) AGN hypothesis for UHECR origin; though GRB origin not ruled out

Photopion Production Cross section

- □ Crab Flares
- □ Extended SNRs and Cen A
- □ TGFs
- □ SGRs
- □ GC and MSPs
- $\square \ \eta \ Carinae$
- Ω γ Cygni