Imaging Atmospheric Cherenkov Telescopes

An introduction into ground-based gamma-ray astronomy

Gernot Maier

HELMHOLTZ

VHE Astronomy - Crab Nebula

VHE Astronomy - Crab Nebula

Crab Nebula among the strongest sources: >1 TeV: 7 photon/m²/y

VHE astronomy:

energy, direction, particle type

Particle shower

Cherenkov Light

Cherenkov light from air showers: weak, short (~ns), blue flash of light

Atmosphere

Gamma-'

Photon

Earth

Photon absorption - Energy loss of electrons/positrons

radiation length:

mean distance over which a high-energy electron losses all but 1/e of its energy by Bremsstrahlung 7/9 of mean free path for pair production by high-energy photon

$$X_0 = \frac{716.4 \text{ g cm}^{-2} A}{Z(Z+1) \ln(287/\sqrt{Z})}$$

in air:
$$X_0 = 37.15 \text{ g/cm}^2$$

Extensive Air Showers: Heitler model

Longitudinal distributions

Gernot Maier | Imaging Atmospheric Cherenkov Telescopes | Jun 2011

Multiple Coulomb Scattering

projected scatter angle: distribution with Gaussian width:

Lateral distribution

Lateral distribution

hadrons muons electrs neutrs

Gamma 10¹⁴ eV

emitted when velocity v of charged particle exceeds local speed of light:

 $nv/c = n\beta > 1$

(n = local refractive index)

light is emitted along a cone with half opening angle θ :

$$\cos \theta = 1 / (Bn)$$

number of Cherenkov photons per path length x:

$$rac{d^2N}{dxd\lambda} = rac{2\pilpha z^2}{\lambda^2} \left(1 - rac{1}{eta^2 n^2(\lambda)}
ight)$$

 Pavel Alekseyevich

 Cherenkov

(Nobel price1958)

Density - refractive Index

Density - refractive Index

Cherenkov radiation: emission angle

Cherenkov radiation: emission angle

Lateral distribution of Cherenkov photons on the ground

Lateral distribution of Cherenkov photons on the ground

KASCADE air shower array

VERITAS

Cherenkov photon arrival times

Gernot Maier | Imaging Atmospheric Cherenkov Telescopes | Jun 2011

Shower fluctuations

randomly selected showers with 80 GeV primary photon energy

Shower fluctuations

number of Cherenkov photons per shower fluctuates by a factor of 1.1-2

Shower fluctuations

Geomagnetic Field

Proton vs Gamma-ray showers

Atmosphere

Fig. 1. Average lateral distributions of Cherenkov light photons in the wavelength range 300-600 nm for vertical 100 GeV gamma-ray showers in CORSIKA 5.71 simulations with different atmospheric profiles (2000 showers simulated for each profile). Absorption of Cherenkov light is taken into account (see Section 3). Observation altitude is 2200 m above sea level.

Atmospheric extinction

Wavelength [nm]

site dependent: use MODTRAN to calculate exact values

Atmospheric extinction

MODTRAN & K.Bernlöhr (2000)

Wavelength [nm]

Transmission to 2.2 km altitude

Cherenkov radiation: wavelength distribution

Gernot Maier | Imaging Atmospheric Cherenkov Telescopes | Jun 2011

first TeV gamma-ray observatory in the US

FIGURE 1. The first TeV gamma-ray observatory in the United States consisted of two 1.5m telescopes (made from World War II searchlight reflectors) above (left center); the telescopes were manually operated and were located at a dark site in southern Arizona during the winter of 1967-8 [10]. The telescopes were directed (by eye) at a point ahead of the position of the putative source so that the earth's rotation swept the source through the field of view. Power came from an electric generator on the back of the truck (center right) and the pulse counting electronics were housed in a small trailer (center). The system was mercifully free of computers and the analysis was done offline with a mechanical calculator. No sources were detected.

completed in 1968 upgrade with imaging camera proposed 1977 first detection (Crab Nebula) 1986

Observatory	Elevation (km)	Telescopes #	Mirror Area (m ²)	FoV (degrees)	First Light	Threshold (GeV)	Sensitivity (%Crab)
H.E.S.S.	1.8	4	428	5	2003	100	0.7
VERITAS	1.3	4	424	3.5	2007	100	1
MAGIC	2.2	1	236	3.5	2005	50	1.6
HAGAR	4.3	7	31	3	2008	60	9
Whipple	2.3	1	75	2.2	1985	400	10
CANGAROO III	0.1	3(4)	172 (230)	4	2006	400	10
PACT	1.1	24	107	3	2001	750	11
TACTIC	1.3	1	10	2.8	2001	1500	70
SHALON	3.3	1	11.2	8	1996	1000?	?

D

Imaging Atmospheric Cherenkov Telescopes

Imaging Atmospheric Cherenkov Telescopes

Camera, electronics and data acquisition

- 499 PMTs (Photonis XP 2970/02)
- 0.15° pixel separation, 3.5° field of view
- light concentrator
- 500 MSample/s flash ADC (2 ns)
- 8 bit dynamic range (dual range)
- typical data rate 6 Mbyte/s per telescope
- dead time for typical array rate of 300 Hz is 8-10%

mirror reflectivity

Background....

Tracking

slew speed in the order of 1 (VERITAS) - 5 (MAGIC) deg/s

Field of View

Right Ascension (2000.0)

GRB 091123

1111111111111111	///////////////////////////////////////
TITLE:	GCN/FERMI NOTICE
NOTICE DATE:	Mon 23 Nov 09 01:56:15 UT
NOTICE TYPE:	Fermi-GBM Flight Position
RECORD NUM:	47
TRIGGER_NUM:	280634161
GRB RA:	338.883d {+22h 35m 32s} (J20
	339.007d {+22h 36m 02s} (cur
	338.257d {+22h 33m 02s} (195
GRB_DEC:	+7.850d {+07d 50' 60"} (J20
	+7.901d {+07d 54' 05"} (cur
	+7.591d {+07d 35' 27"} (195
GRB_ERROR:	13.70 [deg radius, statistic
GRB_INTEN:	137 [cnts/sec]
DATA_SIGNIF:	6.80 [sigma]
INTEG_TIME:	2.048 [sec]
GRB_DATE:	15158 TJD; 327 DOY; 09/1

Visibility

Observational Constrains

Sky Coverage - 1 day

Sky Coverage - 1 day

typical field of view: 3.5 - 5 deg

exposure [h]

Sky Coverage - 1 week

Sky Coverage - 1 month

Sky Coverage - 1 year

Sky Coverage - 1 year

IACT Analysis

IACT Analysis

Gamma-ray Events - Monte Carlo Simulations

event display VERITAS

(each frame 2 ns long)

typical reconstruction accuracy: 0.1⁰ (per event)

Observations

v-ray σ <u>()</u> about every 1000th event

(each frame 2 ns long)

gamma/hadron separation

(based on Image/Hillas parameters)

mean scaled width

$$mscw = \frac{1}{N_{images}} \left[\sum_{i}^{N_{images}} \frac{\text{width}_{i} - w_{MC}(R, s, \Theta)}{\sigma_{\text{width}, MC}(R, s, \Theta)} \right]$$

(same for length)

Gernot Maier | Imaging Atmospheric Cherenmeanescaled width

background suppression

angular resolution single most important factor for background suppression (for point sources only)

Background Models

Fig. 4. Count map of γ -ray-like events from 5 h of HESS observations of the active galaxy PKS 2155–304 (Aharonian et al. 2005d). Note that the data were taken in wobble mode around the target position with alternating offsets of $\pm 0.5^{\circ}$ in declination. The *ring-* (*left*) and *reflected-region-* (*right*) background models are illustrated schematically.

Angular Resolution and Geomagnetic Field

Gernot Maier | Imaging Atmospheric Cherenkov Telescopes | Jun 2011

Energy Resolution

Limitations

shower-to-shower fluctuations (height of emission maximum)

Poisson statistics

background noise (NSB)

shower core reconstruction

Systematic Error in Energy Reconstruction

	CONTR	TA RIBUTION TO THE	ABLE 4 Albert et al (MAGIC) 2008		
Source of Uncertainty	Class	Uncertainty (%)	Comments		
Parametrization of atmosphere in MC simulation	A	3	Deviations due to yearly and daily pressure changes, deviations of real density distribution and standard atmosphere model		
Atmospheric transmission losses due to Mie scattering	A, (C)	5	Lack of good measurements; short-term unpredictable changes possible		
Incorrect NSB simulation	A	3	MC assumes uniform NSB; variations due to source location, air glow, variations due to man-made light; stars in the FOV		
Reflectivity of main mirror	A	7	From measurements of reflected star images		
Variation of the useful mirror area	A	3	Malfunctions of active mirror control resulting in focusing losses		
Day-to-day reflectivity changes		2	Due to dust deposit variations and occasional dew deposit		
Photon detection efficiency of the PMT/light catcher system	A, C	10-12	See text		
Unusable camera channels	В	3	Dead PMTs (5-10 channels), problems in calibration (5-10 channels)		
Trigger inefficiencies	B, C	4	Due to discriminator dead time, baseline shifts/drifts, level differences trigger branch and FADC branch, etc.		
Signal drift in camera due to temperature drifts	A, C	2	Combination of PMT QE change (small), amplifier and optical transmitter drifts		
Camera flat-fielding	A, B	2	Calibration problem		
Signal extractor	В	5	Complex effect due to trigger jitter (early pulses from PEs generated on first dynode), etc.; baseline jitter, shifts in FADCs		
Cuts and methods used in the analysis	B, C	5-30	Energy dependent; see discussion of differential energy spectrum		
Losses of events during reconstruction	B(A)	8	Simplifications in MC simulation		
Estimate of BG under source	B(A)	4	Camera nonuniformity not included in MC; hadronic events not perfectly simulated in MC		
Small tracking instabilities	В	2	Source jitters around nominal camera position due to small tracking errors, small camera oscillations due to gusts, etc., resulting in a wider signal spread than predicted by MC		
Nonlinearities in the analog signal chain (PMT-FADC)	C(A)	3-10	Saturation and nonlinearities of electronic and optoelectronic components		

lass A: contributions to the uncertainty on the energy scale. Class B: contributions to the uncertainty in the event rate. Class B(A): error contributes more to the leading term. Some of the uncertainties are energy are averaged. Class C: contribution affecting the spectral slope.

typical systematic uncertainty on flux: 15-20%

Effective Areas

Gernot Maier | Imaging Atmospheric Cherenkov Telescopes | Jun 2011

criteria for detectability of a source during an exposure time T

a minimum number n₀ (5...10) of gamma rays must be detected:

$$n_0 > R_{\gamma} T$$

the gamma-ray signal must be significant above the fluctuations in the background

Li & Ma significances

Likelihood ratio method after Li & Ma (1983):

$$S = \sqrt{-2\ln\lambda} = \sqrt{2} \left\{ N_{\text{on}} \ln\left[\frac{1+\alpha}{\alpha} \left(\frac{N_{\text{on}}}{N_{\text{on}}+N_{\text{off}}}\right)\right] + N_{\text{off}} \ln\left[(1+\alpha) \left(\frac{N_{\text{off}}}{N_{\text{on}}+N_{\text{off}}}\right)\right] \right\}^{1/2}.$$
 (17)

Sensitivity

Next-generation instruments

Sensitivity Improvements

Low energies

limitation: photon collection large telescopes with >20 m diameter energy threshold: some 10 GeV

Midsize telescopes

limitation: gamma/hadron separation telescopes with ~12 m diameter energy range: 100 GeV - 10 TeV

High-energy section

limitation: effective area telescopes with ~4-6 m diameter energy range: > 5 TeV

Sensitivity Improvements

Low energies

limitation: photon collection large telescopes with >20 m diameter energy threshold: some 10 GeV

Midsize telescopes

limitation: gamma/hadron separation telescopes with ~12 m diameter energy range: 100 GeV - 10 TeV

High-energy section

limitation: effective area telescopes with ~4-6 m diameter energy range: > 5 TeV

ric Cherenkov Telescopes | Jun 2011

Schwarzschild-Couder Optics

		2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
СТА	Deservations: Disease												
	Preparatory Phase	CTA.											
	Preliminary report regarding the implementation and cost of	CIA	_		_								
	Proposal for the implementation and operation of CTA												
	Detailed implementation and operation plan for CTA												
	Signature-ready draft documents for the construction		selected b										
	CTA baseline array construction											2 10 10 10	
	Initial science operation with partial arrays												
E fam	Science operation					지지하다							
	CTA mid-energy expansion (US)												
	SC R&D and prototyping		para di seconda di s	a di sana di sa Na sana di sa									
	Telescope construction												
	Full science operation							- 11 TE		1101			
						1100		10110		. 1001			

Literature

- > Hillas, A.M. et al, ApJ 503, 744 (1998) (Crab Nebula detection)
- > Weekes, T.: Very High Energy Gamma-Ray Astronomy (2003)
- Weekes, T., astro-ph/0811.1197
- Hinton, J., astro-ph/0803.1609
- > Aharonian, F., Buckley, J., Kifune, T., Sinnis, G., Rep. Prog. Phys. 71 (2008) 096901

