A Little History, but... in Astronomy its Resolution, Resolution,

Resolution

Bill Atwood
SCIPP/UCSC

Gamma Ray Pair Conversion

Energy loss mechanisms

Fig. 2: Photon cross-section σ in lead as a function of photon energy. The intensity of photons can be expressed as $I=I_{0} \exp (-\sigma x)$, where x is the path length in radiation lengths. (Review of Particle Properties, April 1980 edition).

Opening Angle
$\theta_{\text {Open }} \approx \frac{4 m_{e}}{E_{\gamma}}$
At 100 MeV
$\theta_{\text {Open }} \sim 1^{\circ}$

Gamma-ray
Space Telescope

Previous Satellite Detectors

- 1967-1968, OSO-3 Detected Milky Way as an extended γ ray source
621γ-rays
- 1972-1973, SAS-2, ~8,000 γ-rays
- 1975-1982, COS-B
orbit resulted in a large and variable background of charged particles

$$
\sim 200,000 \gamma \text {-rays }
$$

- 1991-2000, EGRET

Large effective area, good PSF, long mission life, excellent background rejection $>1.4 \times 10^{6} \gamma$-rays

Evolution of GLAST

- April, 1991 CGRO (with EGRET on board) Shuttle Launch
- May, 1992 NASA SR \& T Proposal Cycle

1. Select the Technologies

Delta II (launch of GP-B)

2. Make it Modular

 Incoming γ

Large area SSD systems and CsI Calorimeters resulted from SSC R\&D

Original GISMO 1 Event Displays from the first GLAST simulations

Another lesson learned in the 1980's: monolithic detectors are inferior to Segmented detectors

Technology of Choice: Solid State

Silicon Strip Detector Principle

Custom Integrated Circuits (ASICs)
Low-noise, Low-power
Amplifier/Discriminator
(S/N typically > 20)

GLAST has 884736 channels. Total Tracker Power = 160 Watts!

Pair Conversion Telescope

Expanded view of converter-tracker:

 scattering effects: $\theta_{0} \sim 2.9 \mathrm{mrad} / \mathrm{E}[\mathrm{GeV}]$ (scales as $\left(\mathrm{x}_{0}\right)^{1 / 2}$)

High energy PSF set by hit resolution/plane spacing:

At higher energies, more planes contribute information:

Energy	\# significant planes
100 MeV	2
1 GeV	~ 5
10 GeV	>10

Tracker Design and Analysis

Pair Conversion Telescope Layout

Close spacing of Radiators to SSDs minimizes multiple scattering effects

$$
\chi_{\mathrm{eff}}(\mathrm{MS})=\chi_{\mathrm{w}} / 2+2 \cdot \chi_{\mathrm{SSD}}=.025
$$

Trim Radiator tiles to match active SSD area

Kalman Tracking/Fitting

Data Analysis Techniques for High Energy Physics, R. Fruhwirth et al., (Cambridge U. Press, 2000, $2^{\text {nd }}$ Edition)

Angular Resolution Parameters

$$
\delta \theta_{\mathrm{MS}}(100 \mathrm{MeV}) \cong 38 \mathrm{mrad}
$$

$$
\boldsymbol{\delta} \boldsymbol{\theta}_{\mathrm{MS}}(\text { Space }) \cong \sqrt{2} \cdot 38 \mathrm{mrad}=\mathbf{5 4 m r a d}=3.1^{\circ}
$$

$$
\boldsymbol{\delta} \boldsymbol{\theta}_{\mathrm{Det}}=\frac{\sigma_{S S D}}{\mathbf{d}} \sqrt{2}=\frac{\text { Pitch } / \sqrt{\mathbf{1 2}}}{\mathbf{d}} \cdot \sqrt{2}
$$

$$
\delta \theta_{\text {Det }}=\frac{228 \mu \mathrm{~m}}{32.9 \mathrm{~mm} \cdot \sqrt{6}}=2.8 \mathrm{mrad}=.16^{\circ}
$$

Multiple Scattering
$\boldsymbol{\theta}_{\mathbf{o}}=\frac{\mathbf{1 4 m r a d}-\mathbf{G e V}}{\mathbf{p} \boldsymbol{\beta}} \sqrt{\chi_{\mathrm{Eff}}} \cong \frac{\mathbf{1 4 m r a d}-\mathbf{G e V}}{.5 \mathbf{E}_{\gamma}} \sqrt{\chi_{\mathrm{Eff}}}$

Trade Between A $_{\text {eff }}$ \& PSF

$\mathbf{N}_{\gamma} \propto \chi_{\text {Rad }} \quad \mathbf{P S F} \propto \sqrt{\chi_{\text {Rad }}}$
Source Sensitivity \Rightarrow Photon Density
Sens. $\approx \frac{\mathbf{N}_{\gamma}}{\text { PSF }^{2}} \quad \begin{gathered}\text { Doesn't depend } \\ \text { on } \chi_{\text {Rad }}!\end{gathered}$
2-Source Separation pushes for thin radiators

Transient sensitivity pushes for thick radiators

Diversion: Review of Covariance

Take a circle - scale the $\mathbf{x} \boldsymbol{\&}$ y axis:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Rotate by θ : $\quad x \rightarrow x \cos (\theta)+y \sin (\theta)$

$$
y \rightarrow y \cos (\theta)-x \sin (\theta)
$$

Results:

$$
x^{2}\left(\frac{\cos ^{2}(\theta)}{a^{2}}+\frac{\sin ^{2}(\theta)}{b^{2}}\right)+2 x y \cos (\theta) \sin (\theta)\left(\frac{1}{a^{2}}-\frac{1}{b^{2}}\right)+y^{2}\left(\frac{\sin ^{2}(\theta)}{a^{2}}+\frac{\cos ^{2}(\theta)}{b^{2}}\right)=1
$$

Rotations mix $\boldsymbol{x} \& \boldsymbol{y}$. Major \& minor axis plus rotation angle θ complete description. Error Ellipse described by Covariance Matrix:

Distance between a point with an error and another point measured in σ 's:

$$
\left.\begin{array}{l}
(n \sigma)^{2}=r^{T} C^{-1} r \text { where } r=(\vec{x}-\bar{x}) \text { and } \\
C^{-1}=\operatorname{Inverse}(C)=\left[\begin{array}{ll}
C_{x x}^{-1} & C_{x y}^{-1} \\
C_{y x}^{-1} & C_{y y}^{-1}
\end{array}\right] \text { and } C_{x y}^{-1}=C_{y x}^{-1}
\end{array}\right\} \begin{gathered}
\text { Simply weighting } \\
\text { distance by } 1 / \sigma^{2}
\end{gathered}
$$

Covariance - 2

Multiplying it out gives:

$$
(n \sigma)^{2}=r^{T} C^{-1} r=(x, y)\left[\begin{array}{ll}
C_{x x}^{-1} & C_{x y}^{-1} \\
C_{x y}^{-1} & C_{y y}^{-1}
\end{array}\right]\binom{x}{y}=x^{2} C_{x x}^{-1}+2 x y C_{x y}^{-1}+y^{2} C_{y y}^{-1}
$$

Where I take $\bar{x}=0$ without loss of generality.
This is the equation of an ellipse! Specifically for a 1σ error ellipse ($n \sigma=1$) we identify:

$$
C_{x x}^{-1}=\frac{\cos ^{2}(\theta)}{a^{2}}+\frac{\sin ^{2}(\theta)}{b^{2}} \quad C_{y y}^{-1}=\frac{\sin ^{2}(\theta)}{a^{2}}+\frac{\cos ^{2}(\theta)}{b^{2}} \quad C_{x y}^{-1}=\sin (\theta) \cos (\theta)\left(\frac{1}{a^{2}}-\frac{1}{b^{2}}\right)
$$

and $\quad C^{-1}=\frac{1}{\operatorname{det}(C)}\left[\begin{array}{cc}C_{y y} & -C_{x y} \\ -C_{x y} & C_{x x}\end{array}\right]$ where $\operatorname{det}(C)=\left(C_{x x} C_{y y}-C_{x y}^{2}\right)$
The correlation coefficient is defined as: $R^{2}=\frac{C_{x y}^{2}}{C_{x x} C_{y y}}$
Summary: The Covariance Matrix describes an ellipse where the major and minor axis and the rotation angle map directly onto its components!

Covariance - 3

Let the fun begin! To disentangle the two descriptions consider

Also $\operatorname{det}(\mathbf{C})$ yields (with a little algebra \& trig.):

$$
a \cdot b=\sqrt{\operatorname{det}(C)}=\frac{A r e a}{\pi}
$$

Now we're ready to continue the story of GLAST (Fermi-LAT)!

Multi-variate Analysis: Kalman Filter

Gamma-ray
Space Telescope
The Kalman filter process is a successive approximation scheme to estimate parameters
Simple Example: 2 parameters - intercept and slope: $x=x_{0}+S_{x} * z ; P=\left(x_{0}, S_{x}\right)$

Propagation:

$$
\begin{aligned}
& \mathbf{x}(\mathbf{k}+\mathbf{1})=\mathbf{x}(\mathbf{k})+\mathbf{S}_{\mathbf{x}}(\mathbf{k}) *(\mathbf{z}(\mathbf{k}+\mathbf{1})-\mathbf{z}(\mathbf{k})) \\
& \mathbf{P}(\mathbf{k}+\mathbf{1})=\mathbf{F}(\delta \mathbf{z}) * \mathbf{P}(\mathbf{k}) \text { where }
\end{aligned}
$$

$$
\begin{aligned}
F(\delta z) & =\left(\begin{array}{cc}
1 & z(k+1)-z(k) \\
0 & 1
\end{array}\right) \\
C(k+1) & =F(\delta z) * C(k) * F(\delta z)^{T}+Q(k)
\end{aligned}
$$

Kalman Filter (2)

$$
P(k+1)=\frac{C^{-1}(k+1) * P(k+1)+V^{-1}(k+1) * x(k+1)}{C^{-1}(k+1)+V^{-1}(k+1)} \quad \text { and } \quad C(k+1)=\left(C^{-1}(k+1)+V^{-1}(k+1)\right)^{-1}
$$

Now its repeated for the $k+2$ planes and so -on. This is called FILTERING - each successive step incorporates the knowledge of previous steps as allowed for by the NOISE and the aggregate sum of the previous hits.

How Well does it work?

Really a game of "Do you get out what you put in?"

1 GeV Muons used for testing Energy for Kalman Fit = MC Energy Results: Large Tail on χ^{2}
Solution: Include energy losses in Tracker (Bethe-Bloch)

Next: $\chi^{\mathbf{2}}$ Depends on Angle

Large Angles \Rightarrow too Narrow!!
...Suspect Meas. Errors

Re-Work of Meas. Errors

Gamma-ray
Space Telescope

Gaussian Equivalent $\boldsymbol{\sigma}$ for a Square Distribution

Hence $\quad \frac{\text { Strip }- \text { Pitch }}{\sqrt{12}}=\frac{228 \mu \mathrm{~m}}{\sqrt{12}}=65.8 \mu \mathrm{~m}$

Actual "hits" on tracks are in general Clusters of Strips. Naively expect $\sigma_{\text {Cluster }}=\frac{\text { ClusterWidth }}{\sqrt{12}}$

Success! χ^{2} Distributions - Text-Book!

Vertexing: Two Problems

1. Z Location of the Vertex

Put Vertex at Radiator Mid-Point

Tracks

Put Vertex DOCA Point Next Best Solution

If DOCA location of 2 tracks lies before first hits but is after the next layer up -

$$
-\mathrm{Z}_{\mathrm{VTX}}=\mathrm{DOCA}-\mathrm{Z}
$$

All Other Cases

Put Vertex at Z location of start of the $1^{\text {st }}$ Track

Preferred Solution

If 2 Tracks share the same first hit and the Cluster Size is no more then 2 Strips and the first hit directly proceed a W radiator $\mathbf{Z}_{\mathrm{VTX}}=$ middle of W Radiator prior to first hit

Vertexing (2)

2. Covariant Averaging of Tracks

Multivariate Averaging: $\quad P_{\text {Pair }}=\frac{C_{1}^{-1} \cdot P_{1}+C_{2}^{-1} \cdot P_{2}}{C_{1}^{-1}+C_{2}^{-1}}$

$$
\begin{aligned}
P_{\text {Pair }} & =\left(C_{1}^{-1}+C_{2}^{-1}\right)^{-1} \cdot\left(C_{1}^{-1} \cdot P_{1}+C_{2}^{-1} \cdot P_{2}\right) \\
C_{P a i r} & =\left(C_{1}^{-1}+C_{2}^{-1}\right)^{-1}
\end{aligned}
$$

where P_{i} are the parameter vectors of the combination(Pair) and tracks (P_{1} and P_{2}) and C_{i} are the covariance matrices

And

$$
\chi^{2}=\left(\boldsymbol{P}_{1}-\boldsymbol{P}_{\text {Pair }}\right)^{T} C_{\text {Res } 1}^{-1}\left(\boldsymbol{P}_{1}-\boldsymbol{P}_{\text {Pair }}\right)+\left(\boldsymbol{P}_{2}-\boldsymbol{P}_{\text {Pair }}\right)^{T} \boldsymbol{C}_{\text {Res } 2}^{-1}\left(\boldsymbol{P}_{2}-\boldsymbol{P}_{\text {Pair }}\right)
$$

where

$$
C_{\mathrm{Re} s 1,2}=C_{1,2}-C_{\text {Pair }}
$$

The parameter vectors \boldsymbol{P} are $\left(x, S_{x}, y, S_{y}\right)$

Neutral Energy Concept

Sometimes at the start of the shower the charge pair does not well reflect the direction of the incoming photon.

Bremstrahlung can cause much (most) of the energy to windup in photons.

The Calorimeter centroid is a measure of where these photons impact the calorimeter.

A 'Neutral Energy" direction can be inferred by connecting the found vertex with the Cal. Centroid.

One can determine the covariant error matrix for this inferred direction by using the errors on the centroid location.

By having an imaging calorimeter, Fermi-LAT is the first Gamma Ray instrument able to do this!

ermi Where does the Charged Solution go Wrong?

At energies <1 GeV only the first 2 Tracker Hits determine the direction

Here's the rub.

Internal and External
Brems. distort direction
This is in addition to multiple scattering
Expect effect to be more sever in 18% radiators
(Thick-18\%, Thin-3\%)
Brems. in $2^{\text {nd }}$ and lower decks doesn't effect direction

Due to Internal Brems. ratio of effected events
(Thin : Thick Decks) will be < ratio of Rad. Lens.

Internal Radiator

Is this Effect Present in the Monte Carlo?

Define $\theta_{N C}$ to be the angle between The VTX (Charged Tracks) Direction and the Neutral Energy Direction

Neut. Energy Implementation

First Task: Determine what the errors are as a function of energy
Naively one expects the location error to $\sim \mathbf{R}_{\text {Moliere }} / \sqrt{\mathbf{E}}$
Run $\gamma \mathrm{s}$ [$100 \mathrm{MeV}, 10 \mathrm{GeV}]$ in a patch $(\mathrm{x}, \mathrm{y})=([100,150],[100,150])$
at normal incidence ($\hat{\mathbf{e}}_{z}=-1$)

Cal Centroid Error vs Log(E)

Second Task: Combine Neutral energy direction covariently with Charged Soln.

$$
\mathbf{P}_{\text {SUM }}=\mathbf{C}_{\text {SUM }}\left(\mathbf{C}_{\text {Charged }}^{-1} \mathbf{P}_{\text {Charged }}+\mathbf{C}_{\text {Neutral }}^{-1} \mathbf{P}_{\text {Neutral }}\right)
$$

where P_{i} and C_{i} are the 4-element parameter vectors and the
4×4 Covariance Matrices and $\mathrm{C}_{\mathrm{SUM}}=\left(\mathrm{C}_{\text {Charged }}^{-1}+\mathrm{C}_{\text {Neutral }}^{-1}\right)^{-1}$

All Gamma Results

Event Selection: CTBClassLevel > 0 \& CTBCORE > . 1

Events Using Neutral Energy Solution

Comments
$>44 \%$ events use the Neutral Energy Solution
$>$ The effectiveness of using Neutral Energy increases with increasing energy
$>$ The far tails on the PSF are reigned in

Making Covariance Usable

The Chicken and Egg problem

In this case the "Chickens" are the tracks and the "Eggs" are the energy determinations for the tracks.

Tracking needs an estimation of the event energy.
Energy reconstruction benefits greatly from knowing about the tracks.

Track Recon Logical Flow

Initial Energy Estimation
\Longrightarrow Pattern Recognition
First Kalman Fits
Improved Energy Determination
Second Kalman Fits
Final Energy Determination

Trouble: Final Energy can be factors off from the energy used in the $2^{\text {nd }}$ Kalman Fit

Fixing the Energy Problem

Elements of the Cov. Matrix scales as $\mathbf{1 / E} \mathbf{E}^{\mathbf{2}}$ below ~ 10 GeV (Mult. Scat. Dominated)
Suggests $\quad \mathrm{C}_{\mathrm{FINAL}} \cong \mathrm{C}_{\mathrm{FIT}} \cdot\left(\frac{E_{F I N A L}}{E_{F I T}}\right)^{2}$

Best agreement found with

$$
\mathrm{C}_{\mathrm{FINAL}} \cong \mathrm{C}_{\mathrm{FIT}} \cdot\left(\frac{E_{F I N A L}}{E_{F I T}}\right)^{1.6}
$$

The power 1.6 is consistent with PSF behavior ($1 / E^{.8}$) (Tyrel Johnson, 2007)

Correct Soln.: Iterate Fit with Final Energy

Find iteration ONLY affects Cov. Matrix, NOT the Parameters!

Covariant Errors on the Sky

Transformation of the Track Covariance Matrix to Sky Coordinates

$$
\text { R.P. Johnson September 19, } 2007
$$

The Kalmin fit gives us a covariance matrix in terms of the slope and intercept in each projection. Only the two slopes are relevant to the photon direction, so the first step is to reduce the error matrix from 4×4 to 2×2, simply by removing the rows and columns related to the intercepts. Let's call the two slopes s_{1} and s_{2}. The associated 2×2 covariance matrix is σ_{s}^{2}

Let \hat{v} be the unit vector (direction cosines) denoting the downward (per LAT convention) photon direction in the LAT coordinate system and \hat{w} the corresponding unit vector in the sky coordinates (galactic coordinates, for example). Finally, let $\Theta=\{\ell, b\}$ be the photon longitude and latitude in the sky coordinates.

The transformation from \hat{v} to \hat{w} is linear and can be represented by a 3×3 orthogonal matrix \mathbf{R} that includes a space inversion (i.e. negative determinant). The transformations from \mathbf{s} to \hat{v} and from \hat{w} to $\boldsymbol{\Theta}$ are nonlinear, but for purposes of transforming the covariance matrix, all we need are the first-derivative matrices. Let \mathbf{A} represent the 3×2 derivative matrix for the transformation $\mathbf{s} \rightarrow \hat{v}$ and \mathbf{B} the 2×3 derivative matrix for $\hat{w} \rightarrow \boldsymbol{\Theta}$. The 2×2 matrix for the overall transformation $\mathbf{s} \rightarrow \boldsymbol{\Theta}$ then is $\mathbf{M}=$ BRA, and the covariance matrix transforms as

$$
\sigma_{\Theta}^{2}=\mathbf{M} \sigma_{s}^{2} \mathbf{M}^{T}
$$

The transformation equations corresponding to \mathbf{A} can be written

$$
\begin{gathered}
\hat{v}_{z}=-\left[1+s_{1}^{2}+s_{2}^{2}\right]^{-1 / 2} \\
\hat{v}_{x}=\hat{v}_{z} s_{1} \\
\hat{v}_{y}=\hat{v}_{z} s_{2}
\end{gathered}
$$

and the matrix $\mathbf{A}=\partial \hat{v} / \partial \mathrm{s}$ can be written in terms of the direction cosines \hat{v} as

$$
\mathbf{A}=\left(\begin{array}{cc}
\hat{v}_{z}\left(1-\hat{v}_{x}^{2}\right) & -\hat{v}_{x} \hat{v}_{y} \hat{v}_{z} \\
-\hat{v}_{x} \hat{v}_{y} \hat{v}_{z} & \hat{v}_{z}\left(1-\hat{v}_{y}^{2}\right) \\
-\hat{v}_{x} \hat{v}_{z}^{2} & -\hat{v}_{y} \hat{v}_{z}^{2}
\end{array}\right) .
$$

The transformation equations corresponding to \mathbf{B} can be written

$$
\begin{gathered}
\ell=\tan ^{-1}\left(\frac{\hat{w}_{y}}{\hat{w}_{x}}\right) \\
b=\sin ^{-1} \hat{w}_{z}
\end{gathered}
$$

and the matrix $\mathbf{B}=\partial \boldsymbol{\Theta} / \partial \hat{w}$ is

$$
\mathbf{B}=\left(\begin{array}{ccc}
\frac{-\hat{w}_{y}}{\hat{w}_{x}^{2}+\hat{w}_{y}^{2}} & \frac{\hat{w}_{x}}{\hat{w}_{x}^{2}+\hat{w}_{y}^{2}} & 0 \\
0 & 0 & \frac{1}{\sqrt{1-\hat{w}_{z}^{2}}}
\end{array}\right)
$$

These equations are singular at the galactic pole ($\hat{w}_{z}=1$), which has to be protected, and also at $\hat{v}_{z}=0$, which should never occur, given that the Tracker cannot find horizontal tracks.

A First Example: Mrk 421

Neronov \& Collaborators selected events around Mrk 421 with $\mathrm{E}>100 \mathrm{GeV}$. This avoids multiple scattering issues. They applied Johnson's Inst.-2-Sky Transform.

Results:

1) Error Ellipses (sort of) point back towards Mrk 421
2) Smallest Ellipses consistent with limiting track resolution ($\approx \frac{\sigma_{\text {pith }} \cdot \sqrt{2}}{60 c m} \cong .01 \mathrm{deg}$.)
3) Covariant Localization ~2 better then PSF Localization

Summary

> Fermi-LAT is a highly optimized HEP detector for detecting Gamma Rays in the Space Environment.
> The Reconstruction of the Directions on the Sky were realized through $2^{\text {nd }}$ order (covariance!).
> A covariant analysis of source images will bring to bare the full power of the LAT.
> Pass 8 will provide the "correct" covariance matrix using the Final Energy.
> And... just perhaps we'll finally see Pair Halos

