Finding GBM Data

A natural question may be: “Where do I find the data I need?” Well, you’re in luck, because this will show you how to find the data you seek. GBM Data is hosted publicly on the HEASARC FTP server via the Fermi Science Support Center, and the data are stored in a consistent directory structure. But instead of having to navigate a winding maze of FTP directories, we provide a couple of classes built to retrieve the data you want. First, you need to decide if you want trigger data (say from a GRB) or continuous data. Let’s start with trigger data, and assume you know the trigger number you’re interested in:

[1]:
# the datafinder class for triggers
from gbm.finder import TriggerFtp

# initialize the Trigger data finder with a trigger number
trig_finder = TriggerFtp('190114873')
trig_finder.num_files
[1]:
122

We don’t really care about the directory structure, we just want the data. So this quickly gets us to the directory we need. There are 122 files associated with this trigger. Say we want CSPEC data. is there CSPEC available?

[2]:
trig_finder.ls_cspec()
[2]:
['glg_cspec_b0_bn190114873_v00.pha',
 'glg_cspec_b1_bn190114873_v00.pha',
 'glg_cspec_n0_bn190114873_v00.pha',
 'glg_cspec_n1_bn190114873_v00.pha',
 'glg_cspec_n2_bn190114873_v00.pha',
 'glg_cspec_n3_bn190114873_v00.pha',
 'glg_cspec_n4_bn190114873_v00.pha',
 'glg_cspec_n5_bn190114873_v00.pha',
 'glg_cspec_n6_bn190114873_v00.pha',
 'glg_cspec_n7_bn190114873_v00.pha',
 'glg_cspec_n8_bn190114873_v00.pha',
 'glg_cspec_n9_bn190114873_v00.pha',
 'glg_cspec_na_bn190114873_v00.pha',
 'glg_cspec_nb_bn190114873_v00.pha']

Great! There’s a full complement of CSPEC data. How about responses for the CSPEC data?

[3]:
trig_finder.ls_rsp(cspec=True, ctime=False)
[3]:
['glg_cspec_b0_bn190114873_v02.rsp',
 'glg_cspec_b1_bn190114873_v02.rsp',
 'glg_cspec_n0_bn190114873_v02.rsp',
 'glg_cspec_n1_bn190114873_v02.rsp',
 'glg_cspec_n2_bn190114873_v02.rsp',
 'glg_cspec_n3_bn190114873_v02.rsp',
 'glg_cspec_n4_bn190114873_v02.rsp',
 'glg_cspec_n5_bn190114873_v02.rsp',
 'glg_cspec_n6_bn190114873_v02.rsp',
 'glg_cspec_n7_bn190114873_v02.rsp',
 'glg_cspec_n8_bn190114873_v02.rsp',
 'glg_cspec_n9_bn190114873_v02.rsp',
 'glg_cspec_na_bn190114873_v02.rsp',
 'glg_cspec_nb_bn190114873_v02.rsp']

Again, we can list all of the relevant files. Are there any quicklook lightcurve plots?

[4]:
trig_finder.ls_lightcurve()
[4]:
['glg_lc_chan12_bn190114873_v00.pdf',
 'glg_lc_chan34_bn190114873_v00.pdf',
 'glg_lc_chan567_bn190114873_v00.pdf',
 'glg_lc_chantot_bn190114873_v00.pdf',
 'glg_lc_tot_bn190114873_v00.pdf']

What if we want to move on to another trigger? You don’t have to create a new TriggerFTP object, you can just set_trigger():

[5]:
# change trigger
trig_finder.set_trigger('170817529')
trig_finder.num_files
[5]:
128

Of course, you don’t want to just list the files in a directory, you want to download them. Let’s download all the catalog files for GRB 170817A:

[6]:
trig_finder.get_cat_files('./')
glg_bcat_all_bn170817529_v01.fit [==============================] 100.00%
glg_scat_all_bn170817529_flnc_band_v00.fit [==============================] 100.00%
glg_scat_all_bn170817529_flnc_comp_v00.fit [==============================] 100.00%
glg_scat_all_bn170817529_flnc_plaw_v00.fit [==============================] 100.00%
glg_scat_all_bn170817529_flnc_sbpl_v00.fit [==============================] 100.00%
glg_scat_all_bn170817529_pflx_band_v00.fit [==============================] 100.00%
glg_scat_all_bn170817529_pflx_comp_v00.fit [==============================] 100.00%
glg_scat_all_bn170817529_pflx_plaw_v00.fit [==============================] 100.00%
glg_scat_all_bn170817529_pflx_sbpl_v00.fit [==============================] 100.00%
glg_tcat_all_bn170817529_v03.fit [==============================] 100.00%

Now we want some continuous data. There aren’t any trigger numbers for continuous data. Continuous CTIME and CSPEC are available in files that cover a whole day (in UTC) and TTE are offered in hourly files. To find the data you need, instead of a trigger number, you need to specify a time

[7]:
# the datafinder class for continuous data
from gbm.finder import ContinuousFtp

# initialize the continuous data finder with a time (Fermi MET, UTC, or GPS)
cont_finder = ContinuousFtp(met=587683338.0)
cont_finder.num_files
[7]:
379

That’s a whole lotta files in this directory. Most of them are TTE; remember that each hour has a TTE file (since the end of 2012) for each detector. Let’s just list the CTIME that’s available:

[8]:
# list ctime data covering this time
cont_finder.ls_ctime()
[8]:
['glg_ctime_b0_190816_v00.pha',
 'glg_ctime_b1_190816_v00.pha',
 'glg_ctime_n0_190816_v00.pha',
 'glg_ctime_n1_190816_v00.pha',
 'glg_ctime_n2_190816_v00.pha',
 'glg_ctime_n3_190816_v00.pha',
 'glg_ctime_n4_190816_v00.pha',
 'glg_ctime_n5_190816_v00.pha',
 'glg_ctime_n6_190816_v00.pha',
 'glg_ctime_n7_190816_v00.pha',
 'glg_ctime_n8_190816_v00.pha',
 'glg_ctime_n9_190816_v00.pha',
 'glg_ctime_na_190816_v00.pha',
 'glg_ctime_nb_190816_v00.pha']

Now let’s list the available TTE for this time. This will only list the TTE files in the directory that cover the relevant time:

[9]:
# list hourly TTE data covering this time
cont_finder.ls_tte()
[9]:
['glg_tte_b0_190816_21z_v00.fit.gz',
 'glg_tte_b1_190816_21z_v00.fit.gz',
 'glg_tte_n0_190816_21z_v00.fit.gz',
 'glg_tte_n1_190816_21z_v00.fit.gz',
 'glg_tte_n2_190816_21z_v00.fit.gz',
 'glg_tte_n3_190816_21z_v00.fit.gz',
 'glg_tte_n4_190816_21z_v00.fit.gz',
 'glg_tte_n5_190816_21z_v00.fit.gz',
 'glg_tte_n6_190816_21z_v00.fit.gz',
 'glg_tte_n7_190816_21z_v00.fit.gz',
 'glg_tte_n8_190816_21z_v00.fit.gz',
 'glg_tte_n9_190816_21z_v00.fit.gz',
 'glg_tte_na_190816_21z_v00.fit.gz',
 'glg_tte_nb_190816_21z_v00.fit.gz']

Similar to the trigger finder, you can use the same object to search at different times.

[10]:
# change the time of interest
cont_finder.set_time(utc='2017-08-17T12:41:06.47')

Now how about downloading the position history file for this time:

[11]:
cont_finder.get_poshist('./')
glg_poshist_all_170817_v01.fit [==============================] 100.00%

Searching the GBM Catalogs

The HEASARC also hosts two catalogs that are of interest here: a Trigger Catalog that contains information about every GBM trigger, and a Burst Catalog that contains standard analysis of every triggered GRB. HEASARC provides a way to search these catalogs online through their Browse interface, but we offer a way to do it in Python through the Data Tools.

Let’s look at the trigger catalog first:

[12]:
from gbm.finder import TriggerCatalog

trigcat = TriggerCatalog()
trigcat.num_rows
Downloading Catalog from HEASARC via w3query.pl...
Finished in 8 s
[12]:
8283

Depending on your connection, initialization may take a few seconds. You can see what columns are available in the catalog:

[13]:
trigcat.columns
[13]:
array(['version', 'trigger_name', 'name', 'ra', 'dec', 'trigger_time',
       'trigger_type', 'reliability', 'adc_high', 'adc_low', 'bii',
       'channel_high', 'channel_low', 'dec_scx', 'dec_scz',
       'detector_mask', 'end_time', 'error_radius', 'geo_lat', 'geo_long',
       'lii', 'localization_source', 'phi', 'ra_scx', 'ra_scz', 'theta',
       'time', 'trigger_algorithm', 'trigger_timescale'], dtype='<U19')

You can also return the range of values for a given column:

[14]:
# error_radius is the statistical localization radius in degrees
trigcat.column_range('error_radius')
[14]:
(0.0, 93.54)

If you only care about specific columns in the table, you can return a numpy record array with only those columns. Let’s return a table with the trigger name and time for every trigger:

[15]:
trigcat.get_table(columns=('trigger_name', 'trigger_time'))
[15]:
rec.array([('bn120403857', '2012-04-03 20:33:58.493'),
           ('bn140912846', '2014-09-12 20:18:03.669'),
           ('bn120227725', '2012-02-27 17:24:41.054'), ...,
           ('bn110201399', '2011-02-01 09:35:10.251'),
           ('bn150705660', '2015-07-05 15:50:18.845'),
           ('bn220403863', '2022-04-03 20:42:39.048')],
          dtype=[('trigger_name', '<U23'), ('trigger_time', '<U23')])

Importantly, we can make slices of the catalog based on conditionals. Let’s only select triggers with localization radii between 1.1 and 10 degrees:

[16]:
sliced_trigcat = trigcat.slice('error_radius', lo=1.1, hi=10.0)
sliced_trigcat.num_rows
[16]:
2482
[17]:
sliced_trigcat.get_table(columns=('trigger_name', 'trigger_time'))
[17]:
rec.array([('bn120227725', '2012-02-27 17:24:41.054'),
           ('bn141205018', '2014-12-05 00:25:29.813'),
           ('bn170116238', '2017-01-16 05:43:15.259'), ...,
           ('bn210624041', '2021-06-24 00:58:23.248'),
           ('bn091012783', '2009-10-12 18:47:02.770'),
           ('bn180304259', '2018-03-04 06:12:47.267')],
          dtype=[('trigger_name', '<U23'), ('trigger_time', '<U23')])

You can also slice on multiple conditionals, simultaneously. Select everything that has a localization radius between 1.1-10 degrees, and happened on or after January 1, 2019:

[18]:
# perform a row slice based on multiple conditionals that can span more than one column
sliced_trigcat2 = trigcat.slices([('error_radius', 1.1, 10.0), ('trigger_time', '2019-01-01 00:00:00', None)])
sliced_trigcat2.num_rows
[18]:
566
[19]:
sliced_trigcat2.get_table(columns=('trigger_name', 'trigger_time', 'error_radius'))
[19]:
rec.array([('bn150806478', '2019-01-02 06:11:31.125',  6.3833),
           ('bn130623790', '2019-01-17 08:50:43.596',  4.63  ),
           ('bn171213061', '2019-01-18 22:29:49.932',  7.39  ),
           ('bn160508290', '2019-01-19 05:59:03.575',  8.35  ),
           ('bn160804576', '2019-01-29 12:55:42.675',  5.    ),
           ('bn210529996', '2019-01-31 02:36:33.938',  5.83  ),
           ('bn110124784', '2019-01-31 23:08:35.673',  9.14  ),
           ('bn110710507', '2019-02-01 06:03:28.818',  7.8667),
           ('bn150319498', '2019-02-02 05:36:55.718',  2.88  ),
           ('bn151222340', '2019-02-02 15:13:12.939',  2.89  ),
           ('bn090228976', '2019-02-03 23:24:11.710',  3.3   ),
           ('bn100405414', '2019-02-04 15:02:50.914',  7.4667),
           ('bn090726218', '2019-02-05 22:31:15.658',  7.06  ),
           ('bn120702891', '2019-02-15 18:31:22.475',  8.48  ),
           ('bn120217808', '2019-02-17 04:31:26.137',  3.23  ),
           ('bn150922462', '2019-02-18 07:54:33.343',  4.3167),
           ('bn210518889', '2019-02-22 07:29:35.526',  6.1   ),
           ('bn181119606', '2019-02-22 12:53:27.151',  1.75  ),
           ('bn091112928', '2019-02-26 12:21:45.676',  4.54  ),
           ('bn210324468', '2019-02-28 23:21:16.317',  3.11  ),
           ('bn100621452', '2019-03-03 05:45:22.235',  2.81  ),
           ('bn160818230', '2019-03-04 08:54:35.515',  7.76  ),
           ('bn190215772', '2019-03-04 19:37:23.342',  1.19  ),
           ('bn181121401', '2019-03-06 22:37:43.178',  8.    ),
           ('bn210424694', '2019-03-07 03:37:16.537',  8.58  ),
           ('bn100219026', '2019-03-10 09:32:32.569',  2.93  ),
           ('bn170614255', '2019-03-12 10:42:10.794',  3.48  ),
           ('bn150712960', '2019-03-13 03:36:00.811', 10.    ),
           ('bn191017391', '2019-03-15 12:17:42.138',  1.5   ),
           ('bn160805498', '2019-03-19 08:28:17.514',  2.86  ),
           ('bn200506404', '2019-03-19 09:00:37.980',  2.15  ),
           ('bn160628136', '2019-03-21 08:42:33.858',  8.52  ),
           ('bn200425701', '2019-03-23 04:17:14.965',  7.25  ),
           ('bn110130230', '2019-03-23 07:16:51.688',  6.75  ),
           ('bn200622092', '2019-03-25 23:58:57.211',  1.35  ),
           ('bn091209001', '2019-03-26 07:31:38.998',  2.93  ),
           ('bn160322552', '2019-03-26 23:24:41.342',  4.65  ),
           ('bn100517518', '2019-03-27 02:39:10.973',  7.75  ),
           ('bn140124527', '2019-03-30 16:39:32.274',  2.02  ),
           ('bn121125469', '2019-04-06 11:09:47.053',  5.24  ),
           ('bn200502574', '2019-04-06 17:52:33.155',  2.7   ),
           ('bn160807480', '2019-04-07 13:48:36.785',  5.8833),
           ('bn171202113', '2019-04-07 16:07:26.493',  2.68  ),
           ('bn160102936', '2019-04-07 18:54:41.578',  3.46  ),
           ('bn110920338', '2019-04-08 12:52:18.176',  5.    ),
           ('bn140626843', '2019-04-11 09:45:48.597',  6.61  ),
           ('bn110524510', '2019-04-11 13:53:58.091',  6.95  ),
           ('bn210910456', '2019-04-19 09:55:37.770',  9.5333),
           ('bn171017823', '2019-04-20 23:32:24.966',  5.54  ),
           ('bn160206566', '2019-04-22 06:48:17.495',  6.25  ),
           ('bn091107635', '2019-04-22 16:05:04.521',  4.46  ),
           ('bn150211239', '2019-04-28 18:48:12.460',  9.08  ),
           ('bn150317580', '2019-04-29 17:49:50.579',  5.7167),
           ('bn210903077', '2019-05-02 04:01:30.415',  5.38  ),
           ('bn190129539', '2019-05-04 09:57:34.203',  6.2   ),
           ('bn161227498', '2019-05-04 16:16:28.313',  4.88  ),
           ('bn130924910', '2019-05-05 01:14:09.330',  5.86  ),
           ('bn151211672', '2019-05-07 06:28:23.301',  5.96  ),
           ('bn201008754', '2019-05-07 23:16:29.638',  4.    ),
           ('bn140224788', '2019-05-08 19:22:50.400',  3.69  ),
           ('bn090428441', '2019-05-10 02:52:13.232',  4.2   ),
           ('bn110828435', '2019-05-10 10:19:16.044',  9.05  ),
           ('bn190504415', '2019-05-13 19:47:08.098',  7.85  ),
           ('bn100923844', '2019-05-17 19:30:10.172',  5.35  ),
           ('bn190808752', '2019-05-25 00:45:47.652',  1.38  ),
           ('bn220211047', '2019-05-31 07:29:11.825',  8.66  ),
           ('bn120105584', '2019-06-01 07:47:24.176',  2.8   ),
           ('bn140714268', '2019-06-03 19:04:25.984',  1.14  ),
           ('bn200313456', '2019-06-05 23:22:27.118',  5.27  ),
           ('bn190407672', '2019-06-06 01:55:07.776',  4.54  ),
           ('bn170829674', '2019-06-07 01:42:44.289',  3.56  ),
           ('bn170604603', '2019-06-08 00:12:18.394',  4.1   ),
           ('bn080802386', '2019-06-09 07:34:05.259',  4.1   ),
           ('bn130219775', '2019-06-10 17:59:49.908',  1.21  ),
           ('bn100614498', '2019-06-12 03:57:24.648',  2.99  ),
           ('bn190603795', '2019-06-15 15:16:27.372',  5.86  ),
           ('bn170815526', '2019-06-19 00:26:01.777',  5.32  ),
           ('bn130118482', '2019-06-19 14:16:25.891',  6.7   ),
           ('bn100525744', '2019-06-20 12:10:10.809',  3.55  ),
           ('bn170717952', '2019-06-23 11:03:27.095',  8.17  ),
           ('bn160804775', '2019-06-26 06:06:21.684',  1.92  ),
           ('bn120224282', '2019-06-28 12:30:55.320',  4.6   ),
           ('bn120605453', '2019-06-30 06:09:58.319',  2.62  ),
           ('bn170310883', '2019-07-07 06:50:05.127',  9.76  ),
           ('bn180722993', '2019-07-07 07:23:01.216',  3.5   ),
           ('bn220114168', '2019-07-08 08:45:11.798',  8.45  ),
           ('bn190720613', '2019-07-10 00:19:20.250',  1.16  ),
           ('bn170403707', '2019-07-12 00:25:20.655',  2.28  ),
           ('bn111010709', '2019-07-12 02:16:41.727',  1.67  ),
           ('bn180826356', '2019-07-14 13:44:39.039',  5.95  ),
           ('bn130204484', '2019-07-16 00:27:59.548',  7.07  ),
           ('bn220316476', '2019-07-16 22:00:08.119',  2.86  ),
           ('bn110107886', '2019-07-19 02:42:21.537',  3.28  ),
           ('bn220104167', '2019-07-19 11:57:51.264',  3.1   ),
           ('bn110903009', '2019-07-20 14:42:09.784',  1.18  ),
           ('bn190505051', '2019-07-20 23:08:38.764',  9.54  ),
           ('bn211223350', '2019-07-26 15:24:53.610',  8.06  ),
           ('bn200402403', '2019-07-26 20:14:30.561',  5.08  ),
           ('bn190804792', '2019-07-28 06:30:36.852',  4.44  ),
           ('bn091109895', '2019-08-04 19:00:37.518',  4.09  ),
           ('bn100902990', '2019-08-05 02:32:30.450',  7.2   ),
           ('bn171009138', '2019-08-05 04:46:00.970',  5.11  ),
           ('bn150623397', '2019-08-05 05:40:46.904',  6.2167),
           ('bn190610750', '2019-08-06 16:12:33.324',  1.21  ),
           ('bn080816503', '2019-08-08 18:03:17.432',  2.    ),
           ('bn130517781', '2019-08-10 16:12:01.243',  1.5   ),
           ('bn201127147', '2019-08-28 14:44:26.448',  6.58  ),
           ('bn100609783', '2019-08-30 00:32:48.260',  2.53  ),
           ('bn200831462', '2019-08-30 06:20:46.350',  8.45  ),
           ('bn220401896', '2019-08-31 07:57:31.191',  5.    ),
           ('bn110328520', '2019-08-31 16:38:37.978',  1.7   ),
           ('bn171106498', '2019-09-03 17:19:36.255',  3.12  ),
           ('bn140501497', '2019-09-05 23:38:28.489',  2.73  ),
           ('bn210924960', '2019-09-06 18:25:09.288',  9.94  ),
           ('bn100424876', '2019-09-10 00:39:37.860',  2.42  ),
           ('bn151118554', '2019-09-15 05:44:57.911',  3.59  ),
           ('bn180119210', '2019-09-19 18:20:02.656',  3.5333),
           ('bn191110587', '2019-09-21 16:45:55.125',  9.53  ),
           ('bn180126095', '2019-09-23 14:48:02.751',  1.2   ),
           ('bn161228553', '2019-09-30 09:36:06.502',  2.24  ),
           ('bn180522678', '2019-10-09 07:08:56.769',  1.91  ),
           ('bn110625474', '2019-10-15 07:50:43.992',  5.55  ),
           ('bn170606968', '2019-10-17 09:23:39.266',  3.12  ),
           ('bn111010237', '2019-10-19 11:15:15.469',  3.18  ),
           ('bn140831374', '2019-10-22 06:50:05.074',  9.9   ),
           ('bn130409960', '2019-10-22 08:11:06.253',  2.22  ),
           ('bn190202234', '2019-10-23 15:06:56.755',  2.11  ),
           ('bn130407800', '2019-10-25 22:13:42.213',  9.29  ),
           ('bn180913783', '2019-10-26 08:23:44.459',  6.73  ),
           ('bn120309402', '2019-10-27 15:19:07.590',  9.2333),
           ('bn180730018', '2019-10-28 04:10:01.398',  8.29  ),
           ('bn140218427', '2019-10-28 05:05:21.712',  3.62  ),
           ('bn111109873', '2019-10-28 14:08:04.442',  1.5   ),
           ('bn180626392', '2019-11-01 21:28:50.523',  8.21  ),
           ('bn101025267', '2019-11-04 12:38:38.563',  3.86  ),
           ('bn121117018', '2019-11-04 15:36:47.645',  4.32  ),
           ('bn090222179', '2019-11-08 00:04:37.596',  4.3   ),
           ('bn130716352', '2019-11-10 14:05:34.993',  6.27  ),
           ('bn081130212', '2019-11-11 08:19:09.572',  7.2   ),
           ('bn151107851', '2019-11-11 08:44:29.948',  1.67  ),
           ('bn210515623', '2019-11-11 13:07:10.792',  1.57  ),
           ('bn090814950', '2019-11-12 08:51:18.192',  2.12  ),
           ('bn101101744', '2019-11-13 13:52:44.522',  3.06  ),
           ('bn141031257', '2019-11-17 00:08:28.724',  9.01  ),
           ('bn090108020', '2019-11-18 22:12:01.821',  3.8   ),
           ('bn160216560', '2019-11-25 15:12:45.686',  5.2167),
           ('bn101220576', '2019-11-29 03:22:27.127',  1.25  ),
           ('bn220211657', '2019-11-30 06:04:41.797',  7.02  ),
           ('bn120703498', '2019-11-30 12:09:34.900',  5.15  ),
           ('bn170610689', '2019-12-11 06:03:47.840',  2.57  ),
           ('bn150703259', '2019-12-12 05:52:18.051',  2.02  ),
           ('bn180218635', '2019-12-13 06:05:33.022',  4.44  ),
           ('bn080806896', '2019-12-13 18:49:07.969',  2.9   ),
           ('bn171126235', '2019-12-20 14:08:29.264',  3.29  ),
           ('bn130314147', '2019-12-21 19:14:28.844',  1.41  ),
           ('bn181216551', '2019-12-25 07:25:16.497',  5.42  ),
           ('bn120504468', '2019-12-25 17:37:51.867',  4.06  ),
           ('bn100328141', '2019-12-27 17:21:44.144',  4.82  ),
           ('bn211120548', '2020-01-05 21:55:28.993',  1.93  ),
           ('bn160119072', '2020-01-10 12:26:08.356',  6.31  ),
           ('bn090403314', '2020-01-11 15:11:08.106',  9.7   ),
           ('bn110517902', '2020-01-12 12:36:31.101',  8.3   ),
           ('bn090529564', '2020-01-14 03:40:43.724',  1.5   ),
           ('bn160718975', '2020-01-17 12:24:06.532',  1.82  ),
           ('bn170614486', '2020-01-19 16:37:07.531',  1.86  ),
           ('bn110117364', '2020-01-27 18:11:18.671',  9.63  ),
           ('bn210620204', '2020-01-30 05:57:16.079',  8.5   ),
           ('bn140630505', '2020-01-30 09:59:56.672',  2.24  ),
           ('bn220424481', '2020-02-01 00:57:20.322',  1.88  ),
           ('bn120118898', '2020-02-03 03:44:03.546',  7.17  ),
           ('bn110806043', '2020-02-03 20:39:37.917',  8.4833),
           ('bn080805496', '2020-02-04 12:25:17.161',  5.6   ),
           ('bn101223834', '2020-02-05 20:17:23.328',  4.34  ),
           ('bn121220311', '2020-02-07 01:22:55.598',  8.3   ),
           ('bn211211909', '2020-02-08 01:14:17.086',  7.3   ),
           ('bn110710954', '2020-02-19 09:54:14.678',  3.87  ),
           ('bn131125689', '2020-02-21 03:52:58.711',  2.25  ),
           ('bn140928100', '2020-02-23 19:32:03.243',  7.07  ),
           ('bn130919352', '2020-02-24 05:05:49.279',  5.72  ),
           ('bn190411579', '2020-03-01 07:40:46.355',  3.18  ),
           ('bn120226871', '2020-03-13 10:57:12.130',  6.01  ),
           ('bn120309265', '2020-03-17 00:40:30.488',  6.7333),
           ('bn120309358', '2020-03-19 07:44:40.320',  6.7333),
           ('bn150707124', '2020-03-20 09:56:46.851',  2.53  ),
           ('bn130623396', '2020-03-23 18:46:32.956',  7.12  ),
           ('bn210504959', '2020-03-26 12:24:47.903',  3.91  ),
           ('bn110522296', '2020-03-27 20:56:48.165',  6.4   ),
           ('bn190615636', '2020-04-02 09:39:37.908',  2.32  ),
           ('bn120819048', '2020-04-02 16:30:29.655',  7.94  ),
           ('bn130206482', '2020-04-02 19:46:23.077',  2.4   ),
           ('bn140906175', '2020-04-03 22:04:03.419',  7.66  ),
           ('bn170724543', '2020-04-03 23:21:57.371',  5.25  ),
           ('bn130815420', '2020-04-04 16:57:02.830',  1.6   ),
           ('bn210518545', '2020-04-05 09:27:21.555',  1.77  ),
           ('bn150907794', '2020-04-07 06:22:01.482',  8.9333),
           ('bn160605921', '2020-04-07 09:18:33.475',  5.93  ),
           ('bn170908686', '2020-04-12 06:57:11.947',  6.4667),
           ('bn170831179', '2020-04-18 20:45:00.278',  1.61  ),
           ('bn090320801', '2020-04-21 20:45:59.726',  9.5   ),
           ('bn160518985', '2020-04-25 16:49:50.945',  4.04  ),
           ('bn140219319', '2020-05-01 10:25:44.847',  8.23  ),
           ('bn170817908', '2020-05-02 13:46:33.856',  3.69  ),
           ('bn170219002', '2020-05-03 17:18:33.570',  1.41  ),
           ('bn210101620', '2020-05-05 23:50:44.085',  4.56  ),
           ('bn140105065', '2020-05-06 00:28:41.053',  6.07  ),
           ('bn130722605', '2020-05-06 09:41:08.981',  8.85  ),
           ('bn160803373', '2020-05-07 15:52:58.839',  7.05  ),
           ('bn160804180', '2020-05-09 22:59:04.499',  6.69  ),
           ('bn100417166', '2020-05-10 10:41:16.959',  9.18  ),
           ('bn170119228', '2020-05-17 18:52:28.279',  4.41  ),
           ('bn110421757', '2020-05-22 15:36:39.467',  1.71  ),
           ('bn130208684', '2020-05-25 14:40:28.486',  4.67  ),
           ('bn090831317', '2020-05-29 12:05:34.896',  1.92  ),
           ('bn170718229', '2020-05-31 02:51:18.524',  7.9833),
           ('bn120625119', '2020-06-01 02:19:49.995',  1.17  ),
           ('bn100714672', '2020-06-04 18:39:45.859',  3.69  ),
           ('bn210125369', '2020-06-07 08:41:49.657',  6.51  ),
           ('bn090511684', '2020-06-09 09:06:59.309',  7.    ),
           ('bn171207055', '2020-06-14 14:34:55.239',  9.54  ),
           ('bn090109332', '2020-06-15 06:00:05.083',  9.8   ),
           ('bn190408536', '2020-06-16 01:09:15.631',  9.0833),
           ('bn170506169', '2020-06-16 15:41:47.725',  9.69  ),
           ('bn080723339', '2020-06-19 02:36:11.670',  5.5667),
           ('bn161217128', '2020-06-19 06:03:22.367',  7.56  ),
           ('bn130112286', '2020-06-19 11:48:43.086',  4.93  ),
           ('bn120226447', '2020-06-22 02:11:48.116',  1.15  ),
           ('bn160206430', '2020-06-23 18:02:48.953',  4.17  ),
           ('bn150829183', '2020-06-25 12:45:49.143',  2.17  ),
           ('bn180201780', '2020-06-29 12:49:49.292',  9.21  ),
           ('bn150317798', '2020-06-30 23:31:21.894',  5.    ),
           ('bn220401429', '2020-07-03 08:11:39.611',  4.55  ),
           ('bn120101354', '2020-07-03 23:16:41.839',  8.77  ),
           ('bn090815946', '2020-07-06 15:12:08.383',  2.35  ),
           ('bn150416773', '2020-07-07 01:44:02.537',  1.93  ),
           ('bn181127274', '2020-07-09 03:31:16.764',  9.3   ),
           ('bn150802512', '2020-07-13 22:02:40.092',  7.05  ),
           ('bn090902401', '2020-07-14 05:56:02.259',  3.8   ),
           ('bn160512536', '2020-07-14 08:15:25.914',  5.08  ),
           ('bn160211119', '2020-07-14 10:28:45.459',  4.97  ),
           ('bn090815438', '2020-07-16 07:34:28.480',  5.65  ),
           ('bn131126163', '2020-07-22 02:14:55.944',  2.28  ),
           ('bn200924284', '2020-07-23 16:35:24.787',  3.08  ),
           ('bn130304410', '2020-07-24 05:06:18.985',  1.2   ),
           ('bn140608713', '2020-08-01 15:35:46.754',  2.91  ),
           ('bn090909487', '2020-08-02 11:46:46.843',  8.05  ),
           ('bn150622892', '2020-08-03 16:52:43.637',  4.8833),
           ('bn090429530', '2020-08-08 11:15:57.405',  4.8   ),
           ('bn190601325', '2020-08-09 05:04:31.565',  8.28  ),
           ('bn091223511', '2020-08-09 06:07:22.164',  2.39  ),
           ('bn200802491', '2020-08-11 15:10:42.684',  2.12  ),
           ('bn180428102', '2020-08-16 11:39:31.527',  3.04  ),
           ('bn120522361', '2020-08-26 04:29:52.571',  2.02  ),
           ('bn201031744', '2020-08-30 09:54:18.490',  4.    ),
           ('bn121211289', '2020-08-31 11:06:00.842',  8.8   ),
           ('bn120308588', '2020-09-03 02:42:40.872',  1.19  ),
           ('bn160101215', '2020-09-07 22:57:28.091',  1.37  ),
           ('bn200529504', '2020-09-08 21:15:41.430',  3.65  ),
           ('bn130925546', '2020-09-09 04:01:22.387',  4.12  ),
           ('bn200808469', '2020-09-14 12:48:30.034',  5.32  ),
           ('bn110522256', '2020-09-16 19:28:39.957',  5.56  ),
           ('bn170207906', '2020-09-19 09:35:23.295',  6.085 ),
           ('bn211204901', '2020-09-19 13:38:51.064',  1.72  ),
           ('bn140829880', '2020-09-19 23:08:22.645',  3.53  ),
           ('bn190712095', '2020-09-20 19:56:59.570',  7.59  ),
           ('bn170428136', '2020-09-22 17:13:53.618',  7.46  ),
           ('bn100722291', '2020-09-22 18:04:24.240',  8.06  ),
           ('bn120616630', '2020-09-24 05:38:29.540',  8.54  ),
           ('bn200830413', '2020-09-24 06:48:55.203',  7.19  ),
           ('bn170511477', '2020-09-24 09:15:20.824',  6.79  ),
           ('bn171212948', '2020-09-25 14:38:02.660',  9.95  ),
           ('bn150912117', '2020-09-28 13:14:39.150',  4.6833),
           ('bn200619108', '2020-10-04 02:16:01.088',  4.02  ),
           ('bn211102338', '2020-10-04 08:45:57.614',  4.1   ),
           ('bn081229187', '2020-10-07 02:56:38.168',  8.8   ),
           ('bn160303201', '2020-10-08 18:06:00.936',  9.05  ),
           ('bn140705539', '2020-10-11 15:06:24.659',  5.83  ),
           ('bn090306245', '2020-10-11 20:04:36.171',  4.1   ),
           ('bn140716306', '2020-10-12 05:35:38.502',  5.67  ),
           ('bn131112243', '2020-10-16 03:16:21.143',  4.7833),
           ('bn200714247', '2020-10-19 01:40:02.642',  6.67  ),
           ('bn150206407', '2020-10-19 11:36:22.276',  6.76  ),
           ('bn130818941', '2020-10-20 17:33:54.329',  2.23  ),
           ('bn160709370', '2020-10-21 02:39:55.415',  3.04  ),
           ('bn161115745', '2020-10-31 17:51:24.536',  8.44  ),
           ('bn200723691', '2020-11-04 19:23:25.206',  4.01  ),
           ('bn180426549', '2020-11-05 05:09:32.233',  1.65  ),
           ('bn151212064', '2020-11-08 15:28:23.267',  1.69  ),
           ('bn120926335', '2020-11-09 02:31:05.793',  1.51  ),
           ('bn120206949', '2020-11-18 09:43:48.444',  2.25  ),
           ('bn101202154', '2020-11-19 08:13:13.510',  6.13  ),
           ('bn100506653', '2020-11-21 01:29:49.006',  3.9   ),
           ('bn140824606', '2020-11-21 03:07:45.547',  1.49  ),
           ('bn110806050', '2020-11-21 10:02:44.050',  3.35  ),
           ('bn120715066', '2020-11-22 14:58:07.917',  3.73  ),
           ('bn090814368', '2020-11-22 16:49:15.973',  5.53  ),
           ('bn190326975', '2020-11-22 17:17:38.742',  4.59  ),
           ('bn170908071', '2020-11-23 17:15:03.337',  8.1   ),
           ('bn150512432', '2020-11-24 15:12:51.361',  3.64  ),
           ('bn090219074', '2020-11-27 03:31:44.755',  5.2   ),
           ('bn130601547', '2020-12-01 02:52:14.911',  6.2667),
           ('bn130215649', '2020-12-07 23:26:55.727',  2.1   ),
           ('bn120716577', '2020-12-13 03:53:30.699',  5.09  ),
           ('bn140912664', '2020-12-13 17:54:05.752',  8.21  ),
           ('bn130224370', '2020-12-17 02:35:03.511',  2.62  ),
           ('bn160118060', '2020-12-18 19:09:13.922',  1.49  ),
           ('bn121113544', '2020-12-21 14:11:43.014',  2.06  ),
           ('bn160317640', '2020-12-21 23:28:47.633',  3.84  ),
           ('bn211216556', '2020-12-22 11:03:25.686',  4.29  ),
           ('bn150919556', '2020-12-23 04:09:46.408',  7.7   ),
           ('bn091106762', '2020-12-26 13:16:26.600',  5.6   ),
           ('bn170315582', '2020-12-29 15:20:12.706',  9.18  ),
           ('bn100304004', '2020-12-31 10:44:19.747',  3.26  ),
           ('bn180618245', '2020-12-31 13:12:41.630',  6.2167),
           ('bn170127239', '2021-01-01 14:53:06.860',  6.95  ),
           ('bn181221565', '2021-01-01 20:39:23.613',  6.06  ),
           ('bn200614608', '2021-01-05 16:03:05.920',  6.46  ),
           ('bn160316573', '2021-01-06 00:10:45.287',  3.44  ),
           ('bn120602539', '2021-01-06 05:11:16.402',  7.1333),
           ('bn190513824', '2021-01-08 10:10:10.464',  8.2333),
           ('bn190222537', '2021-01-17 10:58:52.032',  1.5   ),
           ('bn090225009', '2021-01-23 07:19:03.067',  8.7   ),
           ('bn130831058', '2021-01-25 08:52:00.399',  8.06  ),
           ('bn210227115', '2021-01-26 10:00:05.890',  5.8   ),
           ('bn201004365', '2021-01-27 06:26:17.020',  4.29  ),
           ('bn120415958', '2021-02-01 13:36:22.493',  4.96  ),
           ('bn100714686', '2021-02-02 20:10:31.299',  9.69  ),
           ('bn100410740', '2021-02-04 06:29:25.656',  1.7   ),
           ('bn080809808', '2021-02-04 18:38:59.570',  7.1   ),
           ('bn171212040', '2021-02-07 14:27:58.984',  5.    ),
           ('bn190406465', '2021-02-10 17:07:07.657',  7.09  ),
           ('bn090830775', '2021-02-13 17:47:14.165',  5.9833),
           ('bn220418661', '2021-02-25 05:13:35.722',  7.77  ),
           ('bn191019469', '2021-02-27 02:45:10.888',  3.28  ),
           ('bn190612165', '2021-02-28 01:22:53.968',  9.3   ),
           ('bn121019233', '2021-03-03 10:11:38.358',  7.52  ),
           ('bn210615982', '2021-03-08 20:06:00.143',  7.55  ),
           ('bn100811781', '2021-03-12 04:04:04.895',  3.57  ),
           ('bn150224127', '2021-03-15 17:10:51.604',  6.05  ),
           ('bn170808065', '2021-03-17 09:08:29.045',  2.    ),
           ('bn140204547', '2021-03-24 11:14:28.212',  5.64  ),
           ('bn110722710', '2021-03-24 19:59:58.322',  4.66  ),
           ('bn160421137', '2021-03-28 20:45:16.970',  1.18  ),
           ('bn140311618', '2021-04-01 23:17:04.029',  3.32  ),
           ('bn220330520', '2021-04-06 22:46:05.228',  3.75  ),
           ('bn191130253', '2021-04-11 03:30:56.435',  2.27  ),
           ('bn150128624', '2021-04-11 13:32:44.633',  9.09  ),
           ('bn121118576', '2021-04-11 16:31:10.877',  2.4   ),
           ('bn161124636', '2021-04-16 23:56:59.561',  6.2333),
           ('bn130106995', '2021-04-17 11:51:27.471',  1.87  ),
           ('bn170521882', '2021-04-19 21:10:28.455',  9.7   ),
           ('bn081209981', '2021-04-22 13:44:40.169',  4.9   ),
           ('bn170111815', '2021-04-24 16:40:00.979',  6.71  ),
           ('bn200421865', '2021-04-25 04:21:31.259',  2.28  ),
           ('bn160301113', '2021-04-27 04:57:12.992',  6.6   ),
           ('bn170731751', '2021-04-29 15:47:23.416',  6.3   ),
           ('bn100610276', '2021-04-30 21:42:17.665',  7.9   ),
           ('bn200112525', '2021-05-02 07:05:17.885',  2.    ),
           ('bn130725527', '2021-05-03 19:34:09.461',  2.27  ),
           ('bn161106499', '2021-05-04 23:00:47.171',  1.5   ),
           ('bn090325526', '2021-05-07 18:40:38.042',  7.7167),
           ('bn081115165', '2021-05-09 13:53:40.418',  3.2   ),
           ('bn160803157', '2021-05-12 13:15:42.991',  4.35  ),
           ('bn110503130', '2021-05-15 14:56:46.180',  5.8833),
           ('bn140110814', '2021-05-16 23:34:46.497',  3.19  ),
           ('bn161029357', '2021-05-18 00:46:54.636',  6.35  ),
           ('bn200507662', '2021-05-18 13:04:09.640',  2.2   ),
           ('bn150228213', '2021-05-18 21:20:17.915',  5.45  ),
           ('bn150911337', '2021-05-19 06:38:53.855',  4.9333),
           ('bn191009298', '2021-05-19 19:22:03.942',  1.41  ),
           ('bn150828333', '2021-05-24 04:59:59.092',  2.26  ),
           ('bn151227072', '2021-05-24 11:20:34.686',  1.53  ),
           ('bn131002326', '2021-05-27 03:21:49.149',  7.05  ),
           ('bn210503815', '2021-05-27 04:58:58.571',  5.1   ),
           ('bn110221244', '2021-05-28 14:03:46.163',  1.24  ),
           ('bn151212030', '2021-05-29 23:53:37.098',  3.6   ),
           ('bn111018595', '2021-06-02 20:46:02.339',  7.15  ),
           ('bn210416998', '2021-06-03 21:46:28.382',  7.2833),
           ('bn130408653', '2021-06-05 05:08:58.389',  3.93  ),
           ('bn200609380', '2021-06-06 22:40:25.321',  1.88  ),
           ('bn140725583', '2021-06-07 21:23:49.282',  5.28  ),
           ('bn170723116', '2021-06-15 21:23:51.505',  1.41  ),
           ('bn150908689', '2021-06-15 23:33:53.604',  6.2167),
           ('bn170205521', '2021-06-19 12:45:43.730',  4.99  ),
           ('bn170709848', '2021-06-20 04:54:14.284',  7.7   ),
           ('bn120423889', '2021-06-20 15:59:29.600',  5.9333),
           ('bn210820004', '2021-06-21 10:44:03.750',  5.01  ),
           ('bn111012811', '2021-06-22 10:33:01.760',  1.71  ),
           ('bn150817819', '2021-06-24 00:58:23.248',  6.35  ),
           ('bn160611244', '2021-06-25 21:23:21.140',  9.2667),
           ('bn120915000', '2021-06-26 23:46:24.876',  5.87  ),
           ('bn110831936', '2021-06-27 17:57:20.742',  9.1167),
           ('bn160812507', '2021-07-01 07:47:14.117',  6.4667),
           ('bn160322484', '2021-07-06 03:50:09.746',  6.55  ),
           ('bn150506630', '2021-07-06 13:41:34.000',  3.21  ),
           ('bn170127382', '2021-07-09 04:49:04.308',  9.55  ),
           ('bn121009292', '2021-07-15 20:46:30.607',  1.53  ),
           ('bn110529034', '2021-07-16 11:38:13.679',  1.5   ),
           ('bn110430375', '2021-07-19 03:55:47.030',  2.53  ),
           ('bn151110925', '2021-07-24 02:31:33.469',  6.0167),
           ('bn111012456', '2021-07-25 01:08:29.397',  2.08  ),
           ('bn090425377', '2021-07-26 02:32:56.804',  2.1   ),
           ('bn161212652', '2021-07-27 09:50:46.735',  8.5   ),
           ('bn120322979', '2021-07-31 02:12:43.477',  8.7   ),
           ('bn131215298', '2021-07-31 08:48:17.629',  1.38  ),
           ('bn190326314', '2021-08-01 13:57:18.595',  1.26  ),
           ('bn150412128', '2021-08-01 15:34:44.860',  3.9667),
           ('bn150817677', '2021-08-07 12:36:42.844',  5.4   ),
           ('bn160317385', '2021-08-07 16:29:19.536',  5.5   ),
           ('bn161004849', '2021-08-12 00:15:51.734',  6.5333),
           ('bn170908104', '2021-08-12 16:47:01.014',  4.8   ),
           ('bn160201883', '2021-08-13 00:54:23.674',  2.9   ),
           ('bn180618385', '2021-08-15 02:23:49.635',  4.4   ),
           ('bn150428305', '2021-08-18 22:00:41.009',  6.06  ),
           ('bn151106957', '2021-08-20 00:05:14.008',  9.3667),
           ('bn220310122', '2021-08-21 07:40:28.595',  5.65  ),
           ('bn210812699', '2021-08-22 06:32:44.581',  1.12  ),
           ('bn151206363', '2021-08-22 17:30:24.489',  5.1333),
           ('bn170124238', '2021-08-26 07:01:45.161',  2.61  ),
           ('bn130615398', '2021-08-27 10:10:16.144',  6.2   ),
           ('bn171205642', '2021-08-28 05:03:59.131',  4.65  ),
           ('bn180420612', '2021-09-03 01:50:17.389',  4.6167),
           ('bn110712566', '2021-09-03 17:26:58.653',  7.1333),
           ('bn191028589', '2021-09-04 20:47:39.631',  7.67  ),
           ('bn180910032', '2021-09-09 10:43:19.365',  2.12  ),
           ('bn151007630', '2021-09-10 10:56:08.397',  7.3167),
           ('bn210417494', '2021-09-11 02:28:08.403',  5.05  ),
           ('bn150417817', '2021-09-15 12:43:41.202',  8.1167),
           ('bn081207680', '2021-09-17 03:45:47.224',  1.2   ),
           ('bn181105904', '2021-09-19 15:39:51.957',  8.7667),
           ('bn171225119', '2021-09-23 02:59:03.493',  5.2   ),
           ('bn170716717', '2021-09-24 23:02:52.138',  5.2667),
           ('bn131118137', '2021-09-25 01:20:08.678',  4.3333),
           ('bn160615209', '2021-09-25 19:12:27.965',  5.4333),
           ('bn211118985', '2021-09-26 01:03:30.369',  2.68  ),
           ('bn150713951', '2021-09-26 20:51:18.648',  6.25  ),
           ('bn091115177', '2021-09-28 18:16:13.787',  7.94  ),
           ('bn220324110', '2021-10-02 06:08:13.109',  2.64  ),
           ('bn150919606', '2021-10-02 08:06:34.268',  2.57  ),
           ('bn150912260', '2021-10-02 17:45:21.634',  8.5333),
           ('bn220323507', '2021-10-11 19:23:39.819',  9.93  ),
           ('bn100827455', '2021-10-18 16:43:27.608',  5.68  ),
           ('bn091219462', '2021-10-21 11:02:54.311',  5.42  ),
           ('bn120527573', '2021-10-27 05:51:52.696',  5.8333),
           ('bn140809133', '2021-11-02 08:06:03.219',  4.11  ),
           ('bn120315732', '2021-11-02 14:05:35.140',  6.15  ),
           ('bn120630398', '2021-11-03 22:47:04.209',  1.1   ),
           ('bn140508629', '2021-11-04 12:57:41.643',  3.56  ),
           ('bn150608303', '2021-11-04 18:21:49.113',  5.1667),
           ('bn131209963', '2021-11-09 00:39:44.168',  6.14  ),
           ('bn150613619', '2021-11-09 02:42:47.336',  7.35  ),
           ('bn220115230', '2021-11-11 01:50:36.974',  2.42  ),
           ('bn151210329', '2021-11-12 14:34:22.373',  6.1167),
           ('bn140308710', '2021-11-13 10:49:38.698',  2.67  ),
           ('bn141229808', '2021-11-15 16:31:22.410',  5.4667),
           ('bn151216140', '2021-11-16 08:42:33.609',  5.05  ),
           ('bn220209959', '2021-11-16 11:40:59.976',  1.4   ),
           ('bn110605811', '2021-11-16 14:03:53.348',  9.4833),
           ('bn211116363', '2021-11-18 23:38:14.587',  5.1333),
           ('bn200403919', '2021-11-20 13:09:46.838',  4.19  ),
           ('bn150912600', '2021-11-24 02:29:53.557',  6.38  ),
           ('bn161030278', '2021-11-30 15:16:27.028',  5.6167),
           ('bn110619959', '2021-12-01 02:03:54.877',  9.1333),
           ('bn110711502', '2021-12-01 20:42:52.881',  7.3667),
           ('bn150910276', '2021-12-04 11:50:05.858',  5.3167),
           ('bn150529948', '2021-12-04 21:37:00.552',  8.35  ),
           ('bn100702531', '2021-12-07 09:59:09.093',  8.5167),
           ('bn120630963', '2021-12-10 22:29:51.290',  6.4333),
           ('bn160810523', '2021-12-11 21:48:42.842',  7.6667),
           ('bn160219747', '2021-12-12 09:28:03.511',  6.7167),
           ('bn130726509', '2021-12-12 12:46:26.439',  5.7167),
           ('bn140523985', '2021-12-16 06:45:52.056',  9.2   ),
           ('bn090305052', '2021-12-16 13:21:07.392',  5.4   ),
           ('bn110929345', '2021-12-17 07:04:30.327',  5.0667),
           ('bn161028295', '2021-12-19 14:55:22.567',  6.15  ),
           ('bn120618672', '2021-12-19 21:49:46.008',  7.3667),
           ('bn160815299', '2021-12-21 20:48:40.580',  8.08  ),
           ('bn161222118', '2021-12-23 08:23:22.258',  4.3167),
           ('bn180416924', '2021-12-25 00:20:28.067',  2.13  ),
           ('bn110808445', '2021-12-31 07:00:31.787',  8.6167),
           ('bn180407745', '2022-01-01 22:18:30.632',  9.7667),
           ('bn210516982', '2022-01-03 02:20:03.681',  9.52  ),
           ('bn120605953', '2022-01-03 21:03:12.889',  7.7   ),
           ('bn171226604', '2022-01-04 04:01:02.604',  7.65  ),
           ('bn160904462', '2022-01-05 06:01:31.434',  9.1167),
           ('bn190323179', '2022-01-05 07:06:40.737',  6.54  ),
           ('bn150818741', '2022-01-09 07:39:10.685',  7.5333),
           ('bn150808961', '2022-01-09 09:28:12.787',  6.6667),
           ('bn100725573', '2022-01-09 12:57:21.984',  5.1667),
           ('bn110621949', '2022-01-10 15:55:38.323',  6.75  ),
           ('bn120628973', '2022-01-11 06:30:49.104',  7.15  ),
           ('bn140525971', '2022-01-11 18:21:07.760',  8.2833),
           ('bn170915342', '2022-01-11 19:21:49.433',  5.2   ),
           ('bn111005398', '2022-01-12 01:03:46.833',  5.28  ),
           ('bn160101791', '2022-01-12 02:19:22.232',  8.6333),
           ('bn120618128', '2022-01-12 04:31:20.071',  2.59  ),
           ('bn170414551', '2022-01-12 05:42:51.541',  2.27  ),
           ('bn170128303', '2022-01-13 06:49:04.371',  5.2667),
           ('bn160510506', '2022-01-13 10:28:59.035',  6.5833),
           ('bn160804152', '2022-01-14 04:02:16.627',  6.8167),
           ('bn160729273', '2022-01-14 11:26:42.769',  6.6333),
           ('bn181225786', '2022-01-14 11:39:42.666',  6.61  ),
           ('bn091223191', '2022-01-14 13:23:05.832',  8.85  ),
           ('bn190203975', '2022-01-14 14:01:47.413',  9.0333),
           ('bn191117006', '2022-01-15 00:49:17.356',  9.1   ),
           ('bn201020732', '2022-01-15 05:30:29.953',  1.62  ),
           ('bn160807127', '2022-01-15 07:05:44.907',  7.4   ),
           ('bn140217043', '2022-01-15 08:16:31.270',  3.08  ),
           ('bn150911197', '2022-01-15 09:26:39.887',  9.85  ),
           ('bn151108942', '2022-01-15 12:39:25.292',  9.6833),
           ('bn170717639', '2022-01-15 14:20:00.880',  4.4833),
           ('bn180622578', '2022-01-15 17:00:27.581',  2.16  ),
           ('bn151226980', '2022-01-15 18:52:49.070',  9.1833),
           ('bn190118937', '2022-01-15 22:37:50.514',  3.42  ),
           ('bn091230712', '2022-01-17 01:27:12.742',  5.07  ),
           ('bn110527564', '2022-01-17 01:39:37.260',  7.6167),
           ('bn150815832', '2022-01-19 11:46:07.857',  5.7333),
           ('bn120315329', '2022-01-20 05:54:01.088',  6.6333),
           ('bn141124277', '2022-01-20 14:51:55.915',  4.98  ),
           ('bn100610417', '2022-01-24 01:47:00.032',  4.4833),
           ('bn181105315', '2022-01-25 19:01:21.666',  4.8833),
           ('bn151113830', '2022-01-30 23:14:35.949',  5.3333),
           ('bn210701324', '2022-01-31 05:40:28.513',  8.3833),
           ('bn120530121', '2022-02-03 15:22:40.041',  3.27  ),
           ('bn160122338', '2022-02-09 23:00:50.423',  6.1333),
           ('bn140404030', '2022-02-11 01:07:48.877',  4.88  ),
           ('bn141109447', '2022-02-11 15:46:28.962',  2.77  ),
           ('bn170202190', '2022-02-11 22:01:44.635',  5.2833),
           ('bn151014430', '2022-02-14 00:02:40.608',  6.55  ),
           ('bn160128807', '2022-02-22 02:21:17.836',  7.5   ),
           ('bn150915165', '2022-02-22 19:24:07.136',  4.6833),
           ('bn220125793', '2022-03-05 11:33:20.478',  5.6333),
           ('bn150623895', '2022-03-05 16:13:02.180',  4.6167),
           ('bn170823820', '2022-03-06 07:20:00.522',  5.3667),
           ('bn150716433', '2022-03-08 05:35:30.099',  8.25  ),
           ('bn151211252', '2022-03-10 02:55:07.867',  7.5333),
           ('bn161026312', '2022-03-13 18:50:51.769',  5.8333),
           ('bn211103949', '2022-03-14 21:32:57.716',  6.75  ),
           ('bn171012680', '2022-03-15 02:25:56.875',  7.1167),
           ('bn170917325', '2022-03-16 11:25:37.875',  6.8833),
           ('bn120822628', '2022-03-20 04:39:54.512',  7.7   ),
           ('bn110301817', '2022-03-21 06:46:22.002',  5.1333),
           ('bn150628787', '2022-03-23 12:10:11.567',  9.6667),
           ('bn150824125', '2022-03-24 02:39:04.314',  4.84  ),
           ('bn150908288', '2022-03-30 12:28:09.273',  5.7833),
           ('bn170923188', '2022-04-01 10:17:40.891',  5.03  ),
           ('bn111018785', '2022-04-01 21:29:49.486',  7.46  ),
           ('bn150715906', '2022-04-03 10:10:02.661',  6.3   ),
           ('bn180426005', '2022-04-03 22:16:46.499',  2.8   ),
           ('bn140319964', '2022-04-04 17:47:23.327',  3.64  ),
           ('bn181013796', '2022-04-05 06:11:39.121',  5.3167),
           ('bn180715741', '2022-04-07 04:00:42.152',  5.12  ),
           ('bn160518039', '2022-04-11 07:20:00.530',  2.18  ),
           ('bn080803772', '2022-04-13 04:01:04.779',  5.9   ),
           ('bn220313785', '2022-04-15 15:28:59.684',  7.1667),
           ('bn160307326', '2022-04-17 13:52:35.964',  6.8667),
           ('bn150816756', '2022-04-17 22:31:39.145',  5.6333),
           ('bn180128915', '2022-04-18 15:51:58.878',  3.62  ),
           ('bn180618314', '2022-04-21 08:17:54.527',  5.0667),
           ('bn210909447', '2022-04-23 08:30:02.748',  1.82  ),
           ('bn180330891', '2022-04-24 11:32:49.172',  3.7   ),
           ('bn160725306', '2022-04-26 07:10:36.182',  6.75  ),
           ('bn160317762', '2022-04-30 05:28:17.848',  7.65  ),
           ('bn180826785', '2022-04-30 21:35:59.799',  5.3167),
           ('bn210624041', '2022-05-01 04:49:36.246',  4.64  ),
           ('bn091012783', '2022-05-01 11:28:01.143',  2.45  ),
           ('bn180304259', '2022-05-04 00:15:42.682',  9.5   )],
          dtype=[('trigger_name', '<U23'), ('trigger_time', '<U23'), ('error_radius', '<f8')])

You’ll notice in the table listing that there are multiple datatypes. This is an improvement over the scripts provided by HEASARC, because there is no metadata provided to tell you if a column is a specific datatype. Our catalog classes have automatic type-detection so you don’t have to worry about converting strings to ints or floats.

We can also connect to the burst catalog in the same way we connected to the trigger catalog:

[20]:
from gbm.finder import BurstCatalog
burstcat = BurstCatalog()
burstcat.num_rows
Downloading Catalog from HEASARC via w3query.pl...
Finished in 70 s
[20]:
3273

Again, this may take several seconds, largely because of how the HEASARC perl API works. One word about the Burst Catalog before you get overwhelmed: it has a lot of columns. Basically every parameter for every standard spectral model that is fit, for both a time-integrated spectrum and the spectrum at the peak flux. There is also T90, T50, flux, and fluence information on different timescales and energy ranges. All in all, there are 306 different columns. Gasp.

[21]:
burstcat.columns
[21]:
array(['name', 'ra', 'dec', 'trigger_time', 't90', 't90_error',
       't90_start', 'fluence', 'fluence_error', 'flux_1024',
       'flux_1024_error', 'flux_1024_time', 'flux_64', 'flux_64_error',
       'flnc_band_ampl', 'flnc_band_ampl_pos_err',
       'flnc_band_ampl_neg_err', 'flnc_band_epeak',
       'flnc_band_epeak_pos_err', 'flnc_band_epeak_neg_err',
       'flnc_band_alpha', 'flnc_band_alpha_pos_err',
       'flnc_band_alpha_neg_err', 'flnc_band_beta',
       'flnc_band_beta_pos_err', 'flnc_band_beta_neg_err',
       'flnc_spectrum_start', 'flnc_spectrum_stop',
       'pflx_best_fitting_model', 'pflx_best_model_redchisq',
       'flnc_best_fitting_model', 'flnc_best_model_redchisq',
       'actual_1024ms_interval', 'actual_256ms_interval',
       'actual_64ms_interval', 'back_interval_high_start',
       'back_interval_high_stop', 'back_interval_low_start',
       'back_interval_low_stop', 'bcat_detector_mask', 'bcatalog', 'bii',
       'duration_energy_high', 'duration_energy_low', 'error_radius',
       'flnc_band_dof', 'flnc_band_ergflnc', 'flnc_band_ergflnc_error',
       'flnc_band_ergflncb', 'flnc_band_ergflncb_error',
       'flnc_band_ergflux', 'flnc_band_ergflux_error',
       'flnc_band_phtflnc', 'flnc_band_phtflnc_error',
       'flnc_band_phtflncb', 'flnc_band_phtflncb_error',
       'flnc_band_phtflux', 'flnc_band_phtflux_error',
       'flnc_band_phtfluxb', 'flnc_band_phtfluxb_error',
       'flnc_band_redchisq', 'flnc_band_redfitstat',
       'flnc_band_statistic', 'flnc_comp_ampl', 'flnc_comp_ampl_neg_err',
       'flnc_comp_ampl_pos_err', 'flnc_comp_dof', 'flnc_comp_epeak',
       'flnc_comp_epeak_neg_err', 'flnc_comp_epeak_pos_err',
       'flnc_comp_ergflnc', 'flnc_comp_ergflnc_error',
       'flnc_comp_ergflncb', 'flnc_comp_ergflncb_error',
       'flnc_comp_ergflux', 'flnc_comp_ergflux_error', 'flnc_comp_index',
       'flnc_comp_index_neg_err', 'flnc_comp_index_pos_err',
       'flnc_comp_phtflnc', 'flnc_comp_phtflnc_error',
       'flnc_comp_phtflncb', 'flnc_comp_phtflncb_error',
       'flnc_comp_phtflux', 'flnc_comp_phtflux_error',
       'flnc_comp_phtfluxb', 'flnc_comp_phtfluxb_error',
       'flnc_comp_pivot', 'flnc_comp_pivot_neg_err',
       'flnc_comp_pivot_pos_err', 'flnc_comp_redchisq',
       'flnc_comp_redfitstat', 'flnc_comp_statistic', 'flnc_plaw_ampl',
       'flnc_plaw_ampl_neg_err', 'flnc_plaw_ampl_pos_err',
       'flnc_plaw_dof', 'flnc_plaw_ergflnc', 'flnc_plaw_ergflnc_error',
       'flnc_plaw_ergflncb', 'flnc_plaw_ergflncb_error',
       'flnc_plaw_ergflux', 'flnc_plaw_ergflux_error', 'flnc_plaw_index',
       'flnc_plaw_index_neg_err', 'flnc_plaw_index_pos_err',
       'flnc_plaw_phtflnc', 'flnc_plaw_phtflnc_error',
       'flnc_plaw_phtflncb', 'flnc_plaw_phtflncb_error',
       'flnc_plaw_phtflux', 'flnc_plaw_phtflux_error',
       'flnc_plaw_phtfluxb', 'flnc_plaw_phtfluxb_error',
       'flnc_plaw_pivot', 'flnc_plaw_pivot_neg_err',
       'flnc_plaw_pivot_pos_err', 'flnc_plaw_redchisq',
       'flnc_plaw_redfitstat', 'flnc_plaw_statistic', 'flnc_sbpl_ampl',
       'flnc_sbpl_ampl_neg_err', 'flnc_sbpl_ampl_pos_err',
       'flnc_sbpl_brken', 'flnc_sbpl_brken_neg_err',
       'flnc_sbpl_brken_pos_err', 'flnc_sbpl_brksc',
       'flnc_sbpl_brksc_neg_err', 'flnc_sbpl_brksc_pos_err',
       'flnc_sbpl_dof', 'flnc_sbpl_ergflnc', 'flnc_sbpl_ergflnc_error',
       'flnc_sbpl_ergflncb', 'flnc_sbpl_ergflncb_error',
       'flnc_sbpl_ergflux', 'flnc_sbpl_ergflux_error', 'flnc_sbpl_indx1',
       'flnc_sbpl_indx1_neg_err', 'flnc_sbpl_indx1_pos_err',
       'flnc_sbpl_indx2', 'flnc_sbpl_indx2_neg_err',
       'flnc_sbpl_indx2_pos_err', 'flnc_sbpl_phtflnc',
       'flnc_sbpl_phtflnc_error', 'flnc_sbpl_phtflncb',
       'flnc_sbpl_phtflncb_error', 'flnc_sbpl_phtflux',
       'flnc_sbpl_phtflux_error', 'flnc_sbpl_phtfluxb',
       'flnc_sbpl_phtfluxb_error', 'flnc_sbpl_pivot',
       'flnc_sbpl_pivot_neg_err', 'flnc_sbpl_pivot_pos_err',
       'flnc_sbpl_redchisq', 'flnc_sbpl_redfitstat',
       'flnc_sbpl_statistic', 'flu_high', 'flu_low', 'fluence_batse',
       'fluence_batse_error', 'flux_256', 'flux_256_error',
       'flux_256_time', 'flux_64_time', 'flux_batse_1024',
       'flux_batse_1024_error', 'flux_batse_1024_time', 'flux_batse_256',
       'flux_batse_256_error', 'flux_batse_256_time', 'flux_batse_64',
       'flux_batse_64_error', 'flux_batse_64_time', 'last_modified',
       'lii', 'pflx_band_alpha', 'pflx_band_alpha_neg_err',
       'pflx_band_alpha_pos_err', 'pflx_band_ampl',
       'pflx_band_ampl_neg_err', 'pflx_band_ampl_pos_err',
       'pflx_band_beta', 'pflx_band_beta_neg_err',
       'pflx_band_beta_pos_err', 'pflx_band_dof', 'pflx_band_epeak',
       'pflx_band_epeak_neg_err', 'pflx_band_epeak_pos_err',
       'pflx_band_ergflnc', 'pflx_band_ergflnc_error',
       'pflx_band_ergflncb', 'pflx_band_ergflncb_error',
       'pflx_band_ergflux', 'pflx_band_ergflux_error',
       'pflx_band_phtflnc', 'pflx_band_phtflnc_error',
       'pflx_band_phtflncb', 'pflx_band_phtflncb_error',
       'pflx_band_phtflux', 'pflx_band_phtflux_error',
       'pflx_band_phtfluxb', 'pflx_band_phtfluxb_error',
       'pflx_band_redchisq', 'pflx_band_redfitstat',
       'pflx_band_statistic', 'pflx_comp_ampl', 'pflx_comp_ampl_neg_err',
       'pflx_comp_ampl_pos_err', 'pflx_comp_dof', 'pflx_comp_epeak',
       'pflx_comp_epeak_neg_err', 'pflx_comp_epeak_pos_err',
       'pflx_comp_ergflnc', 'pflx_comp_ergflnc_error',
       'pflx_comp_ergflncb', 'pflx_comp_ergflncb_error',
       'pflx_comp_ergflux', 'pflx_comp_ergflux_error', 'pflx_comp_index',
       'pflx_comp_index_neg_err', 'pflx_comp_index_pos_err',
       'pflx_comp_phtflnc', 'pflx_comp_phtflnc_error',
       'pflx_comp_phtflncb', 'pflx_comp_phtflncb_error',
       'pflx_comp_phtflux', 'pflx_comp_phtflux_error',
       'pflx_comp_phtfluxb', 'pflx_comp_phtfluxb_error',
       'pflx_comp_pivot', 'pflx_comp_pivot_neg_err',
       'pflx_comp_pivot_pos_err', 'pflx_comp_redchisq',
       'pflx_comp_redfitstat', 'pflx_comp_statistic', 'pflx_plaw_ampl',
       'pflx_plaw_ampl_neg_err', 'pflx_plaw_ampl_pos_err',
       'pflx_plaw_dof', 'pflx_plaw_ergflnc', 'pflx_plaw_ergflnc_error',
       'pflx_plaw_ergflncb', 'pflx_plaw_ergflncb_error',
       'pflx_plaw_ergflux', 'pflx_plaw_ergflux_error', 'pflx_plaw_index',
       'pflx_plaw_index_neg_err', 'pflx_plaw_index_pos_err',
       'pflx_plaw_phtflnc', 'pflx_plaw_phtflnc_error',
       'pflx_plaw_phtflncb', 'pflx_plaw_phtflncb_error',
       'pflx_plaw_phtflux', 'pflx_plaw_phtflux_error',
       'pflx_plaw_phtfluxb', 'pflx_plaw_phtfluxb_error',
       'pflx_plaw_pivot', 'pflx_plaw_pivot_neg_err',
       'pflx_plaw_pivot_pos_err', 'pflx_plaw_redchisq',
       'pflx_plaw_redfitstat', 'pflx_plaw_statistic', 'pflx_sbpl_ampl',
       'pflx_sbpl_ampl_neg_err', 'pflx_sbpl_ampl_pos_err',
       'pflx_sbpl_brken', 'pflx_sbpl_brken_neg_err',
       'pflx_sbpl_brken_pos_err', 'pflx_sbpl_brksc',
       'pflx_sbpl_brksc_neg_err', 'pflx_sbpl_brksc_pos_err',
       'pflx_sbpl_dof', 'pflx_sbpl_ergflnc', 'pflx_sbpl_ergflnc_error',
       'pflx_sbpl_ergflncb', 'pflx_sbpl_ergflncb_error',
       'pflx_sbpl_ergflux', 'pflx_sbpl_ergflux_error', 'pflx_sbpl_indx1',
       'pflx_sbpl_indx1_neg_err', 'pflx_sbpl_indx1_pos_err',
       'pflx_sbpl_indx2', 'pflx_sbpl_indx2_neg_err',
       'pflx_sbpl_indx2_pos_err', 'pflx_sbpl_phtflnc',
       'pflx_sbpl_phtflnc_error', 'pflx_sbpl_phtflncb',
       'pflx_sbpl_phtflncb_error', 'pflx_sbpl_phtflux',
       'pflx_sbpl_phtflux_error', 'pflx_sbpl_phtfluxb',
       'pflx_sbpl_phtfluxb_error', 'pflx_sbpl_pivot',
       'pflx_sbpl_pivot_neg_err', 'pflx_sbpl_pivot_pos_err',
       'pflx_sbpl_redchisq', 'pflx_sbpl_redfitstat',
       'pflx_sbpl_statistic', 'pflx_spectrum_start', 'pflx_spectrum_stop',
       'scat_detector_mask', 'scatalog', 't50', 't50_error', 't50_start',
       'trigger_name'], dtype='<U24')
Good luck.
Everything that we demoed for the trigger catalog can also be done with the Burst Catalog.

Next, we will put together some of what we’ve learned to do reduce some GBM data and export it.