Fermi Science Support Center

Caveats About Analyzing GBM Spectra

In analyzing the GBM data, you should be aware of the following:

  • Shadowing in Detector Response — The LAT, other GBM detectors, the spacecraft body and/or the solar panels may be in the field-of-view of a given GBM detector, and these can both shield the detector and scatter burst photons into it. Therefore, the GBM's response is very dependent on the localization of a burst on the sky. It is important to have responses generated for the most up-to-date source location, especially if this can be obtained from the IPN or a mission such as Swift. The response matrices will be routinely updated by the GBM team when improved localizations can be obtained.
  • Detector Response Time Dependence — Fermi will most likely change orientation during the burst, with a possibly significant change in GBM response, particularly for long bursts. Most bursts will be detected while Fermi is in survey mode, with the Fermi pointing moving at ~4 degrees per minute. In addition, Fermi may autonomously repoint towards the location of a strong burst on the timescale of a long burst. The response file provided with the GBM data will include a series of response matrices (in separate FITS extensions). If only one matrix is found in the file, it was calculated for Fermi's orientation at the time of the GBM trigger. If multiple matrices are included, then the analysis software should use the appropriate file for the designated analysis.
  • Calibration — The Iodine K-edge at 33.17 keV, above which an incident photon results in the release of an X-ray from K-shell transitions, is seen as a discontinuity in the response of the NaI detectors. For bright bursts, this can result in large residuals around this energy when spectral fits are performed with the NaI detectors. These residuals contribute to fits that are judged poor in terms of the chosen statistic values for a particular fit model but do not appear to cause a bias in the fit parameters. The user may wish to exclude energy channels at and around the K-edge in order to better assess the quality of the model they are fitting to the data. A description of the ground calibration performed on the GBM detectors is given in Bissaldi et al. Experimental Astronomy, Volume 24, Issue 1-3, pp. 47-88.

As the GBM instrument team continues to test the detectors' in-flight reponse, the detector response functions will undoubtedly evolve and these caveats will change.

The GBM team is in the process of developing solutions to these known issues.

Please contact the FSSC helpdesk for assistance.